ArtRage Script Programmers Guide.

Introduction:

The ArtRage scripting engine incorporates a rich C-like interpreted language. The language allows
local and global variable definitions, function definitions that can take parameters and return values,
as well as flow-control statements such as ‘for/next’ loops, ‘while’ loops, ‘if/then/else’. It can be
used to create complex behaviours for ArtRage tools, or entire parametric painted scenes.

This is not a comprehensive guide to programming. The reader is assumed to have a basic
knowledge of programming, using variables, declaring and calling functions.

The script file
Script files are simple Unicode text files. They can be edited with Notepad or TextEdit. They are
‘Human readable’. The files are read by the script parser line-by-line.

‘Language’ vs ‘Recorded’

When a script is recorded a Unicode(UTF16) text file is produced with XML-style block formatting.
The file is ‘human readable’, with blocks of information surrounded with <block> </block>
statements to help the script parser identify the contents of the blocks. For example, if you record a
simple script in ArtRage then open the resulting script file with Notepad or TextEdit you will see
something similar to this:

//
//
// ArtRage Script File.
//
//

//
// Version Block - Script version and ArtRage version:

//

<Version>
ArtRage Version: ArtRage 3 Studio Pro
ArtRage Build: 3.0.8
Professional Edition: Yes
Script Version: 1
</Version>

//
// Header block - Info about the painting/person who generated this script:
//

<Header>
// === Project data
Painting Name: "Untitled"
Painting Width: 1280
Painting Height: 1024
Painting DPI: 72
// === Author data
Author Name: "Andy"
Script Name: "Test"
Comment: ""
Script Type: ""
Script Feature Flags: 0x000000005
</Header>

//
// ArtRage project features. Sets the startup state of the script:
!/

<StartupFeatures>
Script Startup Features: {

i+0 ooooooog g e——————— -

e - — <Ot @ o = | 40
— W —H -
—at——at——a—— - ——- P —-—4
-0]+ |+ | - 0—dA 0+ gt —— i —— W —— - —
—A-—A-— -+t
T ek
-0 —op| #—o0—"HWo—A+—4+0—A+0—A+0—H0 +0—ut af———at—af
kI
} // End of Script startup feature binary data.
</StartupFeatures>
//
// Script data follows:
//
<Events>
<StrokeEvent>
<StrokeHeader>

<EventPt> Wait: 0.000s Loc: (665, 3306) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv:
NO </EventPt>

<Recorded> Yes </Recorded>

<Smooth> Count: 3

Loc: (665, 333) Pr: O Ti: 1 Ro: 0
Loc: (665, 334) Pr: O Ti: 1 Ro: 0
Loc: (665, 335) Pr: O Ti: 1 Ro: 0

</Smooth>
<PrevA> Loc: (-158.671, 253.411) Pr: 0.243437 Ti: 1 Ro: 0 </PrevA>
<PrevB> Loc: (-142.082, 236.822) Pr: 0.391875 Ti: 1 Ro: 0 </PrevB>

<0ldHd> Loc: (665, 334) Pr: O Ti: 1 Ro: 0 Dr: (-0.967093, -0.254422)
Hd: (0.254422, -0.967093) </OldHd>

<NewHd> Loc: (665, 333) Pr: O Ti: 1 Ro: 0 Dr: (-0.886641, -0.462459)
Hd: (0.462459, -0.886641) </NewHd>
</StrokeHeader>
Wait: 0.000s Loc: (666, 338) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv: NO

Lines starting with ‘//’ are comment lines. They are ignored by the script engine. See the Comments
section.

The block starting with <Version> identifies the ArtRage and script language versions to the ArtRage
script parsing engine. The block starting with <Header> gives information about the script and
author. And so on. Don’t be intimidated by the ‘<StartupFeatures>’ block — it is there to set ArtRage
into a known state before the script plays back. It saves the person recording the script having to
manually record all the settings of all the tools, and all the paper and colour settings etc., to get the
script on playback to look the same as the recorded result. Recorded blocks are surrounded by
<block> </block> to identify them and their contents to the script parser. The <Events> block is the
exception — it doesn’t need to be closed as the block is closed by falling out the end of the script text
file and is always the last block.

The script programming language elements don’t need to be surrounded by block identifiers.
Anything the script parser doesn’t recognize as part of its own recording it assumes is part of the
written programming. In general the C-style function definitions should appear before the <Events>
block of the script, and the main body of the script should be inside the <Events> block. For
example:

real VectorLength(real x, real y)
{
return sqgrt(x * x + y * vy)

}
<Events>
real rWidth = 200

real rHeight = 150
real rDiagonal = VectorLength (rWidth, rHeight)

Recorded scripts are recorded and played back in a linear sequence. The script starts, event 1
happens, then event 2, then event 3 and so on until the script ends. With programmed scripts flow-

control can change the order of events. Events can be put into functions which can called many
times with different settings.

The language

The ArtRage scripting language is based on a subset of the C language. A programmer with C
language experience should immediately be able to start producing complex scripts once they’re
aware of some limitations of the ArtRage scripting language.

Comments
Comments can be used in script files to make them easier for humans to read and understand.
Comments are entirely ignored by the script engine.

Lines starting with ‘//’ are comment lines. Comments can appear on a line after a scripted
command — everything after the ‘//’ is ignored by the script engine and is solely for the benefit of
humans. These are C-style comments and not legal XML. C-style block comments /* ... */ can also
be used to comment out larger blocks of script files so they’re ignored by the script engine. Note
that currently you cannot use block comments to comment out part of a line.

For example ‘n=3 +4 /* + 5 */" wouldn’t work in the script file (even though it is legal in a C-style
program).

Examples of comments:

// This is a comment on a line. The whole line is ignored

int n = 3; // n is given the value of three.

/* n = 4;

n=>5

n==6*/ // All three of these lines are commented out and ignored.

Use comments often. Comments help anyone reading your script to understand what the script
does and why you wrote it that way. Have pity on your future self who will need to understand and
debug the script in six months time — give yourself plenty of help with useful comments, written
when you actually understood what you were thinking when you wrote the script.

Statements

In general the script is evaluated line-by-line. You can have more than one statement per text line so
long as those statements are separated by a semi-colon ‘;’. Unlike the C language a line with only a
single statement doesn’t enforce the ‘;’ rule. For example:

int n = 3 // Only statement on the line, so a semi-colon isn’t enforced
int x; n = x + n; // Semicolon required after the ‘x’ but is optional after the ‘n’
Variables

Four types of variables are defined for the scripting language: int, real, flag, and string. Each are
described here

e intvariable stores a signed whole number of 32 bits. It is equivalent to the C-language ‘long
int’ type. Use it for numbers where you don’t want or care about decimal places, or where
you want to do ‘bitwise’ operations. (See Operators). If you assign a real number to an int
variable the decimal component is dropped off.

e real variable stores a single-precision floating-point number. It is equivalent to the C-
language ‘float’ type. Use it where you care about accuracy to decimal places. If you mix
real numbers with int variables in an operation the ints are promoted to real numbers.

e flag variable stores a true/false or yes/no value. They are useful for choosing behaviours or
different paths to follow in the script. They accept these values for ‘true’: True, Yes, 1. They
accept these values for ‘false’: False, No, 0. The character case of True, False, Yes and No is
not important — YES is the same as Yes, TRUE is the same as True.

e string stores a sequence of Unicode characters. Use it for storing messages, names —
anything with text. ‘string’ variables have some special features:

o When you assign text to a string surround it with quote marks "". For example:
string s = "A piece of string"

o You can use certain ‘escape’ characters to add special characters to the string. \r
inserts a ‘carriage return’, \n inserts a ‘newline’, \tinserts a ‘tab’, \” inserts a
quotation mark, \\ inserts a ‘\’ character. \% also inserts a ‘%’ character but isn’t
generally needed unless you want two or more %’s next to each other - %%
string s = "A piece of string\n\r on two lines.\tWith a tab character. "

o You can insert variable values directly into a string of text by preceding the variable
name with %%. For example: int n = 3; string s = "On the count of %%n"; string t =
"%%s, jump!"; //t="0nthe count of 3, jump!"

o Strings can also be assigned the value of other variables — they are converted to
string equivalents. For example: intn=3; strings=n; //s="3"
flagf=VYes; s=f; //s="true" (flags always evaluate to the strings ‘true’ or ‘false’)

o You can concatenate strings with the ‘+’ and ‘+=" operators. For example:
string s = "A piece "; stringt = s + "of"; t+="string." //t="A piece of string. "
s+="o0f"+3.1415926; //s ="A piece of 3.1415926"

o Strings can be compared with the ‘==" and ‘I=" operators to see if they match. For
example: string s = "Fred"; if (s == sName && s !="Harry") ...

o Strings have functions which work directly on their contents (See String
manipulation functions)

To declare a variable the syntax is very similar to the C language:

int n = 3;

string sMyString = "Hello there";
real rNum;

flag fvalid = Yes

int n2 = n * 2;

The above example demonstrates how you can assign values at the same time as you declare the
variables. Variable names must start with an alphabetic character but can contain any mix of alpha-
numeric characters. The variable names are case sensitive: int n is a different variable to int N.

When variables are declared the assigned values can be complex statements, as in the example
above with n2.

If variable names are preceded with ‘global_’ they are put into a global namespace, which means
they can be accessed from any function or from another script called from the first script. If you try
to declare a global variable more than once, both instances will refer to the same variable. This
means script fragment files called from the main script can affect global variables.

int global n = 3;
global n = 4

+
N

int global n = 5; // Will not cause an error - global n takes the value 5 even if this
// is in a different function, or script fragment file. It’s the same variable.

Numeric values can be expressed as simple numbers: 1, 6, -5 or decimal numbers: 1.2, -4.897, or
exponent floating points: 1e12, -2e3, 4e-7, or as hexadecimal (base 16): 0x03e, 0x045, -0x0fal0

Wherever you see a numeric value or string-literal value in a recorded ArtRage script you can replace
that value with one of your variables, or with a complex expression. For example:

Painting Name: sName

<EventPt> Loc: (x, y + 100) Pr: rPres Ti: 1 Ro: 0 Rv: NO Iv: NO </EventPt>

Dynamic Arrays

In addition to the standard variable types the ArtRage scripting language supports dynamic arrays of
the standard variables. The four types of dynamic arrays are realarray, intarray, stringarray and
flagarray — one type of array for each of the standard variable types.

Dynamic arrays are collections of variables of the same type. You can set the size of dynamic arrays,
add elements to the arrays, access the individual elements of the array using square brackets ‘[]’.

You can copy arrays using the equals operator ‘=" and join arrays together with the ‘+’ and ‘+=
operators.

To declare a dynamic array you can use syntax similar to the standard variables:

intarray aNum
stringarray aNames

You can initialize an array to set its size and the values of its elements by using curly braces ‘{}'. The
example below creates an array with four elements, with each element valued at 2, 4, 6, and 8
respectively.

intarray aNum = { 2, 4, 6, 8 }

The ArtRage scripting language has functions built in to help work with dynamic array variable types
(See Array functions).

Here are some more examples of using dynamic arrays and accessing elements in the arrays.

stringarray sWorkDays = { “Mon”, “Tue”, “Wed”, “Thu”, “Fri” }
sWorkDays[0] = “Blah”; // Monday is now Blah.

stringarray sWeekendDays = { “Sat”, “Sun” }

stringarray sWeekDays = sWorkDays + sWeekendDays

// sWeekdays is { “Blah”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun” }
intarray nNum;

nNum = { 2, 4, 6, 8, 10 }

nNum([1l] = nNum[3] + nNum[4]; // nNum is now { 2, 18, 6, 8, 10 }

nNum. SetSize (2) // nNum is now { 2, 18 }

Operators

Most of the C-language operators are supported and generally work the same way as their C
counterparts. Operators generally take two values (operands) and return a result. In some cases the
types of operands can be mixed —you can add an int type variable to a real type variable which will
return a real type result. The order of evaluation of operations is given by the evaluation priority
(see Table 1: Operators) . Operators with lower evaluation priority numbers are evaluated before

higher evaluation priority numbers. Operators with equal priorities are evaluated left-to-right as

they’re encountered. The contents of braces ‘(“ and ‘)’ is evaluated first, and braces can be nested.

Some examples of operator priority and braces:

x=3-2+4; Operator ‘+' and ‘- both have a priority of 6, so x evaluates to 5

x=3-(2+4); The braces mean the 4 + 2 is evaluated first so x evaluates to 3 — 6, which is -3

x=3+4*5; The “* (multiplication) operator is higher priority (priority 5) so is evaluated
before the addition (priority 6). x =3 +20; x=23
x=(3+4)*(2+(6*7)); Evaluatesto: x=(7) * (2 + (42)), x=7 * 44, x =308

Table 1: Operators

Operator Evaluation Description Examples
priority
= 16 Assignment operator. Set a variable to a value. intn=3
intr
r=n
Math operators — basic mathematic operations
+ 6 Addition R=3+n
- 6 Subtraction R=3-n
* 5 Multiplication R=3*n
/ 5 Division R=3/n
% 5 Modulus — remainder of division. When used with type real it is R=n% 3;//Ris the remainder of n
equivalent to fmod /3
$=9.1%2.5;//Resultis 1.4
Bitwise operators — used with type int variables to affect individual binary bits
& 10 Bitwise ‘AND’ operation. Set result bit to ‘1’ if bit in both operands is N =3 & 2;//Resultis 2 (binary 11
‘1 & 10 ==10)
| 12 Bitwise ‘OR’ operation. Set result bit to ‘1’ if bit in either operands is N =3 2;//Resultis 3 (binary 11 |
‘1 10 == 11)
A 11 Bitwise ‘XOR’ (exclusive or). Set result to ‘1’ so long as bit in only one N=372;//Resultis 1 (binary 11~
of the operands has a ‘1’. For example:0"0=0,170=1, 0"1=1, 171 10==01)
=0
<< 7 Binary shift left. Shifts bits higher by one bit. Equivalent to an integer N =3 << 2 //resultis 12 (binary
multiply by 2 1100 — zeros are added to the
right)
>> 7 Binary shift right. Shifts bits lower by one bit. Equivalent to integer N=3>>1;//resultis 1 (binary 01—
division by 2 bits fall off right)
Boolean (flag) operators.
== 9 Logical equivalency (“is equal to”). Returns a flag value of ‘True’ if intn=3;
operands are the same value. if(n==3)s=n; //True,so‘s=n’
executes
flag f =n==3; //ftakes the value
‘True’
1= 9 Logical inequality (“is not equal to”). Returns a flag value of ‘True’ if intn=3;
operands are different values. if (n!=3)s=n;//False,so‘s=n’
doesn’t execute
> 8 Greater than. Returns ‘True’ if the left-hand operand is numerically intn=3;
higher than the right-hand operand. if (n>2)s=n; //True
flag f=n>3; // ftakes the value
‘False’. (3 isn’t greater than 3)
< 8 Less than. Returns ‘True’ if the left-hand operand is numerically lower | intn=3;
than the right-hand operand. if (n<2)s=n;//False
>= 8 Greater-than-or-equal-to. Returns ‘true’ if the left-hand operand is intn=3;
the same as or numerically greater than the right-hand operand if (n>=3)s=n; // True.
flagf=n>=2;//f=True
<= 8 Less-than-or-equal-to. Returns ‘true’ if the left-hand operand is the intn=3;
same as or numerically lower than the right-hand operand if (n<=3)s=n;//True
flagf=n<=2.9; //f="false
&& 13 Logical ‘AND’. Returns ‘true’ if both the left-hand and right-hand intn=3; ints=4
operands evaluate to ‘true’ if (n<s&&n>2)//True
flag f=n==3 && s==n; // False
|1 14 Logical ‘OR’. Returns ‘true’ if either the left- or right-hand operands intn=3; ints=4
evaluate to ‘true’ if(n<s || n>2)//True

flagf=n==3 || s==n; // true

Unary operators.

- 3 Negative numeric value intn=-3;
ints=-n;
intt=-(s * n)
! 3 Logical ‘NOT’ operator. Makes ‘True’ results into ‘False’ intn=3;
if (I(n>4)) //true—3is not
greater than 4
flag f = True; flagd = !f; // d = False
~ 3 Bitwise invert. In integer values, underlying ‘1’ bits become ‘0’ and ‘0’ intn=3; //0x03
bits become ‘1’ int s ="~n; // s = OxOfffffc
Compound assignment operators — perform an operation on a variable and assign the result to the same variable.
+= 16 Mathematical Addition with assign. intn=3;
n+=5; // nnow equals 8
n+=3*n; // nnow equals 32
-= 16 Mathematical subtraction with assign. intn=3;
n-=5; // nnow equals -2
n-=3*n; //nnow equals -8
*= 16 Mathematical multiplication with assign. intn=3;
n *=5; // nnow equals 15
n *=3*n; //nnow equals 225
/= 16 Mathematical division with assign intn=3;
n\=5; // n now equals zero.
Integer divisions are truncated!
%= 16 Mathematical modulus with assign. Remainder of division, and assign. | intn=3;
n %=>5; // n now equals 3 —
remainder of division of 3/5
&= 16 Bitwise ‘AND’ with assign. Binary bit values are compared. intn=3;
n &=5; // n now equals 1
|= 16 Bitwise ‘OR’ with assign. Binary bit values are compared. intn=3;
n |=5; // n now equals 7
A= 16 Bitwise ‘XOR’ with assign. Binary bit values are compared. intn=3;
n*=5; // n now equals 6
<<= 16 Bitwise shift left with assign. intn=3;
n<<=5; // n now equals 96 (binary
1100000)
>>= 16 Bitwise shift right with assign intn=3;
n>>=5; // nnow equals zero
because all the bits fell off the right
Post increment/decrement. (Note, these aren’t valid in compound statements)
++ 2 Increment operand by 1 intn=3;
n++; // n now equals 4
- 2 Decrement operand by 1 intn=3;
n--; // n now equals 2
Array operators. These are the only operators that work on an entire dynamic array
= 16 Assignment (copy) operator. Copy the entire contents of the array intarray a
intarray b ={ 2, 3, 4}
a=b;
+ 6 Add the entire contents of one array onto the end of another. intarray a = {1, 2}
intarrayb=a+a
//resultb={1, 2,1, 2}
+= 16 Add the entire contents of one array onto the array, and assign the intarray a = {1, 2}
result to the first array. intarray b = {3, 4}
a+=b;
//result:a={1,2,3,4}

File Variables.

The ArtRage scripting language has a special type of variable to help with reading and writing to files.

The variable is the ‘file’ variable and is declared similarly to the other types of variables:

file £
file filDocFile

However unlike the other variable types you cannot assign a value and you cannot use operators
with file variables. To set file variables, to open files, to read and write to files you need to call the
functions on the file variable. (See File Variable functions)

To call a function using a file variable you use a dot “.” after the name of the variable then the
function name. For example:

file filDoc

flag fSuccess = filDoc.Open (“C:/Banana.txt”)

if (fSuccess) {
int nLen = filDoc.Length/(
MessageBox (“"The length of Banana.txt is %$%nLen bytes”)
filDoc.Close()

}

The above code would open a file called Banana.txt on the C: drive if it existed, and would bring up a
message box with the number of bytes in the file.

Note: When specifying file paths ‘\" and ‘/’ can both be used. However because ‘\’ is the special
character, you need to use ‘\\’ wherever you would want to use a single ‘\’ in a path name. So
filDoc.Open(“C:\\Banana.txt”) has exactly the same effect as filDoc.Open(“C:/Banana.txt”)

You cannot create a function of type file (See Function definitions). Trying to declare a function of
type ‘file’ will cause a script error.

When you pass a ‘file’ variable as a parameter to one of your own functions the file variable isn’t
copied. Instead a reference to the same variable is passed to the function and any file functions you
call affect the original file. This differs from other variable types where a copy is passed to a user
function. For example:

void CheckScore (int nScore, file filTable) {
filTable.SetPos (0)
nScore *= 10; // Improve my score
int nOld = filTable.ReadInt32()
if (nOld < nScore) {
filTable.SetPos (0)
filTable.WriteInt32 (nScore)
}
}
file filScoreTable
filScoreTable.Open (“*C:/score.bin”)
int nMyScore = 15
CheckScore (nMyScore, filScoreTable)

In the above example passing filScoreTable to the user-defined function CheckScore allows the
function to make changes to the file score.bin however the variable nMyScore wasn’t affected when
we multiplied nScore by 10 inside the function. nScore was a unique and independent copy of
nMyScore, but filTable was a reference to (and affects) the original filScoreTable.

Flow control.

One of the biggest advantages of a programmed script over a recorded script is that the program can
affect the order in which a script executes. With a recorded script events occur sequentially — they
are played back in same order in which they were recorded. ‘A’ is followed by ‘B’ which is followed
by ‘C’ because that’s the order they were recorded. With a programmed script ‘A’ may execute,
then ‘B’ may execute 20 times, then ‘A’ may execute again with different settings.

Blocks
A script can use curly braces ‘{“ and ‘}’ to define a block of code. For every open brace {‘ you must
have a close brace ‘}', and blocks can be nested — blocks inside blocks.

Blocks are used to define the extent of the chunk of code executed after a flow-control statement.
This is explained more fully in the definitions of the flow control statements below.

Variables declared inside a block are local to that block. For example:

int nHeight = 100; // Total height of all things.
int nWidth = 200; // Total width.
{
int nHeight = 20; // Height of one thing. This is a completely different ‘nHeight’

// which hides the existence of the other ‘nHeight’
int nArea = nWidth * nHeight; // nArea = 200 x 20 = 4000.
}

int nA2 = nArea; // Error! nArea was only valid in the scope of the block.
int nH2 = nHeight; // nH2 = 100. This refers to the first nHeight before the block.
// The nHeight that was inside the block has vanished - gone forever.
If/then/else

A script can make decisions about whether to execute statement block by comparing some values.
The syntax of the ‘if’ statement is:

if (expression) statement

where ‘expression’ is replaced with something that evaluates to ‘true’ or ‘false’, and ‘statement’ is
the single script statement or block (surrounded by curly braces) that executes if the expression is
‘true’. If the value is false the code block after the ‘if’ statement is completely ignored. For
example:
int n = 3;
if (n >= 3) {
string sMessage = "The value of n is %%n";

MessageBox (sMessage) ;

}
In the example above the block of code after the ‘if’ statement would be executed — the message

box would be displayed. If n were equal to 2, then the expression would be ‘false’, and the entire
block with the string and message box would be ignored.

The ‘statement’ part of the ‘if’ statement can be a single statement or a whole block.

if (n >= 3) MessageBox ("The value of n is %%n"); // Equivalent to code above.

If the expression is ‘true’ you may want to execute one block of code, and if the expression is ‘false’
execute a different block of code. That is where ‘else’ is used:

if (expression) statement1 else statement2

If ‘expression’ evaluates to ‘true’ then ‘statement1’ would be executed and ‘statement2’ would be
completely ignored. But if ‘expression’ evaluated to ‘false’ then ‘statement1’would be completely
ignored and ‘statement2’ would be executed instead. For example:

int n = 3;
if (n == 1)
{
MessageBox ("n is very small"
}

else MessageBox ("n is not so small"

The ‘not so small’ messagebox would be displayed. Note how the example mixes block and single
statement versions of if/else.

Several comparisons can be done and the first one which evaluates to ‘true’ will execute its block
with the others ignored. This is the ‘else if’ part of the ‘if’ statement.

int n = 3;
if (n == 1) MessageBox("n is very small");
else if (n == 2) MessageBox("n is middling");
else if (n == 3) MessageBox("n is not so small");
else if (n < 10) {

n *= 3;

MessageBox ("n is now much bigger"
}

else n = 0;

In the example above the ‘not so small’ message box will be displayed and all other code ignored.
The (n < 10) code is also true, but only the first expression which returns ‘true’ gets its code
executed. If n had been 4, then the “much bigger” block would have been executed. If n had been
10 then the last ‘else’ statement would have been hit.

The ‘expression’ part of the ‘if’ statements can be very complex. You can have complex statements,
get values from functions, use the logical operators.

if (sDay == "Thursday" && ((Cost(nCheese) > (10 * sqgrt(gdp))) || (Weather() != fWet))) {
flag fGo = YesNoBox ("Do I really want to go outside? ");
if (£Go)
For/next

Often a script will need to repeat a process many times. A ‘for’ statement allows a block of script
code to execute a set number of times. Here is the syntax:

for (start-expr; test-expr; increment-expr) statement

When the script engine hits a ‘for’ statement it first evaluates ‘start-expr’ — typically this is used to
set the base value of the loop counter. Then it evaluates the ‘test-expr’ — if this evaluates to ‘false’
the for loop ends but if it’s true the script engine executes ‘statement’. ‘statement’ could be a single
statement or it could be a block of code surrounded by curly braces ‘{* and ‘}'. After the code in
‘statement’ has executed the script engine executes ‘increment-expr’. Typically Then it tests the
‘test-expr’ again and if it is ‘true’ executes the ‘statement’ code again. This repeats until ‘test-expr’
becomes false. Then the script will carry on at the next statement past the end of the ‘statement’
block.

The above can be a bit difficult to visualize until you understand how a ‘for’ statement is typically
used:

int n ;

for (n = 0; n < 4; n++) |

MessageBox ("We’re on loop number %%n");

}

When the script engine hits the ‘for’ statement it sets n to zero. Then it checks if n < 4, which is true.
So it executes the code block to print the message. Then it executes the n++ statement. Then it
evaluates ‘n < 4’ which is still true. So the code block executes. Eventually n will increment to 4. At
that point evaluating ‘n < 4’ becomes ‘false’ so the ‘for’ loop stops. The ‘for’ loop executed four
times, with n stepping through the numbers from 0 to 3 (inclusive) inside the loop.

The above example is the typical way ‘for’ loops are used — stepping positively through a set number
of loops. However it’s not the only way. The ‘start-expr’, ‘test-expr’ and ‘increment-expr’ are
nothing special — they can really be any expression. You could start with n = 100, test that it is
greater than zero, and decrement n. ‘for (n =100; n > 0; n--)’ Or you could evaluate a function, or
compare strings, or something else.

While loop
If the script needs to process a block of code until some condition is met rather than just a set
number of times you can use a ‘while’ loop. The syntax is very similar to the ‘if’ statement:

while (expression) statement

So long as ‘expression’ evaluates to ‘true’ the code in ‘statement’ is repeated. When the script
engine hits the ‘while’ statement it evaluates the ‘expression’. If that evaluates to ‘true’ the
‘statement’ code is executed. At the end of the statement block the script loops back to the
‘expression’ and evaluates it again. If it is still true ‘statement’ is executed again. And so on until
‘expression’ becomes false. It is important that something inside the ‘statement’ block changes
something to make ‘expression’ eventually become false or the ‘while’ loop would never end.

flag fHappy = true;

int nCount = 0

while (fHappy) {
fHappy = YesNoBox ("At count %$%$nCount are you still happy? ");
nCount++;

}

In the above example the while loop starts with fHappy evaluating to ‘true’. The code block pops up
a message box asking if you are still happy. If the user selects ‘yes’ fHappy is still true and the loop
executes again. Eventually they will select ‘no’, fHappy takes on the value ‘false’ and the loop will
end when the script next checks the ‘while’ expression. It's important to note that the loop doesn’t
stop at the point where fHappy was set to true, it stops when the ‘while’ loop evaluates fHappy.
This means even though the user selected ‘no’, nCount was still incremented before the script
engine looped back up to the ‘while’ statement to evaluate ‘fHappy’ and end the loop.

Break/Continue

Sometimes when you’re writing a ‘for/next’ loop or ‘while’ loop you need to drop out immediately.
Or you may get half way through the code block inside the loop and decide you don’t need to
execute the rest but you’d like to move onto the next iteration of the loop.

To exit a ‘for/next’ loop or ‘while’ loop immediately you can use the ‘break’ statement.

flag fHappy = true;

int nCount = 0

while (fHappy) {
fHappy = YesNoBox ("At count $%$nCount are you still happy? ");
if (!fHappy) break;
nCount++;

}
In the example above the ‘while’ loop will exit immediately at the ‘break’ statement when fHappy

becomes false. The nCount++ wont happen if fHappy becomes false.

To immediately move onto the next iteration of a loop use the ‘continue’ statement. When the script
engine hits a ‘continue’ inside a block of code for a “for’ or ‘while’ loop it immediately returns to the
start of the loop. In the case of a ‘for’ loop this means it will then increment the loop counter and re-

evaluate the end condition. In a ‘while’ loop it will test the end condition. Then it may execute the
‘statement’ block or not depending on the condition.

for (int n = 0; n < 1000; n++) {
if (n % 2) continue;
if (n % 3) continue;
if (n % 5) continue;
MessageBox ("The first number divisible by 2, 3 and 5 is %%n");
break;

}

In the above example the script will loop through 1000 numbers looking for the first number
divisible by 2, 3, and 5 with no remainder. If it never finds one the loop would end after 1000 tests.
If it finds a number that isn’t divisible by 2 the ‘continue’ statement makes the loop execute again. If
it finds a number divisible by 2 it tests for divisibility by 3. If that fails the ‘continue’ will go back to
the loop and move on to the next n. Eventually (when n == 30) the message box will be displayed.
After that the ‘break’ statement will cause the loop to fall out.

If there are nested ‘for/next’ or ‘while’ loops the ‘break’ and ‘continue’ statements will affect only
the innermost loop block in which they appear. For example:

flag fHappy = true;
while (fHappy) {
for (int n = 100; n >= 1; n--) {
if (n == 42) continue; // I don’t like 42. Ignore it
fHappy = YesNoBox ("%%n loops to go. Still happy?")
if (!fHappy) break;

}
if (fHappy) MessageBox("Yay! Still happy! Let’s loop again!");
}

In the example above the ‘continue’ statement is inside the ‘for’ loop, so it causes the script to
evaluate the next ‘for’. The ‘break’ statement is also inside the ‘for’ block so it causes the script to
fall out of the ‘for’ block, and onto the statement following the “for’ block — the MessageBox.

Exit
If you want the script to end at a certain point you can use the ‘exit’ directive. The script will end
immediately as though it had finished normally.

if (YesNoBox (“Shall we give up?) == yes)) exit
MessageBox (“So you want to carry on I see.”)

In the example above if the user chose to give up the script would have ended immediately and the
second message would never be seen.

Function calls

Use your own functions to define a block of script code to which you can give a useful name. You
can pass parameters to functions; the function can act on those parameters and return a value as a
result. Functions need to be defined somewhere in the script prior to their being called so the script
engine knows about the function name. As the script engine steps through the script it may find a
function definition. At that point the only action the script engine takes is to note of the name of the
function and where it is in the script file. Then it completely ignores the function and steps past it.
Later in the script when a function is called the script engine looks up its list of function names, finds
the one with the matching name, jumps to the point in the script file where it found that function
and then executes the statements inside the function block. When the function exits the script will
return to the point just after where the function call was made.

Function definitions

Define functions somewhere in the script earlier than where they will be used - typically before the
<events> block of the script. Function definitions cannot appear inside other function definitions. A
function definition must be at the start of a new line in the script. The script statements which
define the function must be inside a block of curly braces {“ and ‘}. Here’s the syntax for function
definitions:

return-type function-name() { statements ... }
or
return-type function-name(param1-type paraml-name, ...) { statements ... }

which by example might look like this:

void CubeRoot (real rNum) {
// Some code here
}

The ‘return-type’ of the function is what is handed back to the script after the function call and it can
be one of five types:

e void: No value is returned from the function.

e int: Aninteger value is returned from the function.

e real: Areal number is returned from the function.

o flag: A ‘true/false’ or ‘yes/no’ or ‘1/0’ value is returned by the function
e string: A string value is returned.

A function must return a value if it is defined to return a value (void is the only type that is defined
not to return a value), and the return value must be of the same type as the function definition.

The ‘function-name’ is the name of the function. It must start with an alphabetic character, but can
be any combination of alpha-numeric characters. Function names are case-sensitive. You should
give functions meaningful names relating to what they do to make your scripts easier to read.

You can optionally pass parameters to the function. Inside braces ‘(‘ and ‘)’ after the function name
you can define the ‘param-type’ and ‘param-name’ for any number of parameters passed to the
function. Separate each parameter definition with a comma. ‘param-type’ is one of the four
variable types (see Variables) and ‘param-name’ is the name of a new variable.

Then the body of the function is defined by the curly braces block ‘{}.

Here is an example of a function definition:

real Hypotenuse (real rSideA, real rSideB) {
real rLength = sqgrt(rSideA * rSideA + rSideB * rSideB);
return rLength;

}

In the example above the function is of type ‘real’, which means it is going to evaluate to a real
number result which it will give back to the point in the script where the function was called. The
name of the function is ‘Hypotenuse’. The function takes two parameters — a real number variable
named ‘rSideA’ and a real number variable named ‘rSideB’. The passed-in parameters act like

variable definitions — they create named variables of their types which the function can use inside its
code block. After the parameter list come the body of the function —the block of script code which
is executed when you call the function. Inside the curly braces we can define new variables, call
other function, use flow control or any other script language statements.

If the function has a type, we must use a ‘return’ statement to exit the function with a value of the
same type as the defined type of the function. The only function type which doesn’t require a return
value is a function type ‘void’. Void functions can either end when the script gets to the enclosing
close curly brace ‘Y or when the script encounters a ‘return’ statement without a returned value.

For example:

void ResetGlobals ()
{
global name = "";
global height = 0
}

void CheckName (string sName) {
if (sName == "Andy") {
MessageBox ("Hi %$%sName") ;
return;
}
MessageBox ("I don’t know you, %%sName");
return;

}

The ‘ResetGlobals’ function doesn’t take any parameters, performs some task, then hits the end of
the code block at which point the script continues from the point where the function was called.

The ‘CheckNames’ function takes one string parameter. It performs some task which causes it to
exit with a ‘return’ early in the function. Or it doesn’t exit early if sSName isn’t ‘Andy’, it carries on
until it hits the later ‘return’ which causes it to exit at that point.

‘return’ can be anywhere inside a function block. If the function has a defined type, the ‘return’
needs to pass back a value of the same type. If the function has a defined type, there must be a
return statement with the same type to exit the function —there will be a script error if a function
with a defined type is allowed to execute to the enclosing curly brace ‘}'. If the function is of type
‘void’, the ‘return’ statements are optional.

Calling functions.

Let me stress again that when the script engine is working line-by-line through a script, when it gets
to a function definition it doesn’t execute the function. The only thing the script engine does is to
take a note of the function name and note where it currently is in the script. Then it completely
ignores the function, steps past the function code block and carries on. It may find another function
definition which it also completely ignores aside from noting its name and location. At some point
the script gets to a code statement which isn’t inside a function definition. If that statement makes a
reference to the name of a function which the script engine met earlier it saves its current position
in the script file, looks up the function name in its list and finds the location in the script file of the
function definition. Then it starts executing the script from the code inside the function block.

When the function returns it unwinds back to the point in the script where the call was made and
carries on. This is the function call. Inside a function block you can also call other functions —so long
as the script engine has previously found a function definition with the same name as your function

call it will save its current place, move to the function definition and carry on inside that new
function. Here is an example:

real HypSquared(real rSideA, real rSideB)
{
return NumSquared (rSideA) + NumSquared (rSideB) ; // Returns a hypotenuse squared: a * a + b * b

}

real NumSquared(real rNum) ({
return rNum * rNum; // Returns a number squared: r * r

}

real Hypotenuse (real rSideA, real rSideB)

{

real rlLenSq = HypSquared(rSideA, rSideB); // Get the square of the hypotenuse
real rLength = sqgrt(rLenSq); // Hypotenuse 1is square root of a * a + b * b
return rlLength // Pass that value back to the script.

}

real a = 3;

real b = 4;

real c = Hypotenuse(a, b);

The script engine starts chewing through the script file line by line. It gets to the function definition
for ‘HypSquared’. All it does it take a note of the name and the location in the script file. Then it
ignores that whole block and carries on. It hits the ‘NumSquared’ definition. Again it just notes the
name and the location, and ignores the definition and carries on. Then it hits the ‘Hypotenuse’
function. Again it notes it, and ignores it. Eventually it hits the first code not inside a function
definition. ‘real a =3;’ So it creates a new variable of type ‘real’ called ‘a’ and gives it a value of ‘3’.
Then it creates the real ‘b’ with ‘4’. Then it creates real ‘c’ and tries to give it a value, but meets
function name instead. It finds two values inside the braces ‘(a, b)’ so it puts those values onto a
stack — a temporary holding area. It looks up the function name in its function list and finds it has a
matching name at a location around half-way through the script. The engine takes a note of its
current point in the script, and then it moves its current location in the script to the start of the
definition of the ‘Hypotenuse’ function. At that new point in the script, after the definition of the
name of the ‘Hypotenuse’ function, it finds two parameter definitions inside braces ‘(real rSideA,
real rSideB)’. So it creates two new real-number variables named ‘rSideA’ and ‘rSideB’. It finds it has
a stack with two real-number values, so it assigns those values to the new variables. rSideA =3,
rSideB = 4. Then it executes the code inside the body of the function ‘Hypotenuse’. The first line in
the function says to create a real-number variable named ‘rLenSq’ with a value of — ah, another
function. The script engine notes its current point in the file, evaluates the parameter list for the
function call and puts the values on the stack, looks up the name of the called function ‘HypSquared’
finding it earlier in the script file, moves the script execution to that point, creates two new real
variables (even though they have the same name as the earlier rSideA and rSideB these are two
entirely new variables), gives them the values on the stack and starts executing the code inside the
‘HypSquared’ function. And that code says to return a value which is — ah, more functions. Location
noted, parameters evaluated, code execution point moved to ‘NumSquared’, with the value of
rSideA on the stack. And the code in ‘NumSquared’ returns a real-number value of rNum * rNum.
rNum at that point was 3, so the return value is 9. The script unwinds back to where ‘NumSquared’
was called uses the value 9. Then it carries on and sees it needs to add — yet another function call.
So NumSquared is evaluated again, this time with the value 4 and returns 16. The code execution
inside the ‘HypSquared’ function adds the result of those function calls together and returns a real-
number result of 25. The script unwinds again back into the ‘Hypotenuse’ function with the 25 value
and assigns it to rLenSq. Still inside the ‘Hypotenuse’ code block, real rLength is assigned the result
of another function call sqrt, passing it the value 25. Sqrt is one of the internal math functions

described here (Math functions), and returns the square root of a value. In this case sqrt(25) =5, so
rLength gets the value 5. The next line in the ‘Hypotenuse’ function is ‘return rLength’. The script
unwinds the last step taking the value of 5 and assigning it to the real-number variable ‘c’. Then it
carries on to the next statement. And so on.

Important things to note about that sequence:

e The code inside the function definitions was ignored by the script engine when it met the
function definitions. Just the function’s name and location were noted

e When the function call was made the parameters to pass to the function were evaluated
and their result put on the stack which was then given to the function. The parameters in
the function call and the parameter definitions in the function definition have to match in
type and quantity. If the function has a parameter list expecting a real number and a string,
you must call the function with a real number and a string as parameters. If the function is
expecting three real numbers, you must call the function with three real number
parameters.

e The parameters defined for the function call and any variables defined inside the function
have scope local to the function — they vanish when the function returns. They fall out of
‘scope’ and they are deleted.

e Parameters inside function definitions and variable definitions inside function blocks are
completely new variables even if they have the same name as variables outside the function.

o The type of the value returned from functions must match the type of the function
declaration. ‘void’ functions are the exception.

o The definition of the function and its parameters must be on one line of script text. Function
definitions cannot be split across two or more lines of text.

In the above example C programmers might have noticed that the definition of the function
‘NumSquared’ appears later in the script than the first time it is called. In the ‘HypSquared’
function, ‘NumSquared’ is called, but the definition for ‘NumSquared’ appears after the
definition for ‘HypSquared’. In the C language this would cause an error. However there is no
error in the ArtRage scripting language because the script engine met the definition of
‘NumSquared’ before it got to code which called ‘HypSquared’ (which then called
‘NumSquared’). Therefore the definitions of functions don’t need to appear in the script earlier
than they are referenced inside other functions so long as the script engine has passed over
them prior to their being called.

Function recursion
A function can call itself. This is called recursion. It can be useful if you need to evaluate an iterative
problem where the results of each iteration depend on the previous iteration.

For example if | wanted a function to draw concentric circles where each circle is half the radius of
the previous | could write something like this:

void Circle(real x, real y, real rRadius) {
// Code to draw circle here..

if (rRadius > 10) Circle(x, y, rRadius / 2);
}

Circle (300, 300, 500);

In the example above the circle function is called the first time with a radius value of 500. The Circle
function draws a circle of radius 500 (that particular script code is left to your imagination), at the
location 300, 300. rRadius is greater than 10 so Circle calls itself again with rRadius / 2. This
iteration of Circle draws a circle of radius 250 at the location 300, 300. rRadius is greater than 10 so
Circle is called again with rRadius of 125. And so on. The sixth iteration of Circle calling itself has a
rRadius smaller than 10, so it doesn’t call Circle again — the function falls out of its closing block. The
script returns to the previous iteration of Circle. The previous iteration was processing the ‘if’
statement, which has now been completed so it too falls out the end of the function, back to the
previous iteration. And so on -the recursed iterations of the Circle function unwind and the script
returns to the point just after the Circle(300, 300, 500) call was originally made.

The ArtRage function call stack is not very large. If you recurse to more than around 50 levels you
will get a ‘stack overflow’ error. If you are recursing to that level there is probably a better way of
doing what you're trying to do anyway.

The ‘Wait:’ directive.
The ‘Wait:’ directive has some important implications for function calls.

When ArtRage records a script many of the scripted events are preceded with ‘Wait: 0.018s’ (for
example). The ‘Wait’ directive tells the script engine to momentarily pause playback until that
number of seconds has passed. This lets the script events play back at the same rate they were
recorded. If the artist recording the script paused for a few seconds before making a paint stroke
the script playback would pause for a few seconds before playing that stroke back again. If the
option to play scripts back at full speed is selected all ‘Wait:” directives are considered to be zero.

For very long waits the ‘Wait:’ directive can be expressed in minutes and seconds in the format
‘Wait: m:s’. For example ‘Wait: 2:23.5s’ would pause the script for one minute and twenty-three-
and-a-half seconds. If you want to pause for a variable amount of time, using a variable, you can
surround the time component of the directive with braces ‘(“ and ‘)’. For example ‘Wait: (rTime)’
where rTime is a real-number value of seconds.

The way the ArtRage script engine actually deals with the ‘Wait:’ directive internally has implications
for functions. When the script engine finds a ‘Wait:’ directive it saves the state of the engine and
enters an idle state. Once the time elapsed since the ‘Wait:’ directive was read is equal to the time
in the ‘Wait:’ directive the script restores its state and processes the next statement of the script. It
wakes up and carries on, so to speak.

When a function is defined to return a value, the point where that function is called may be in an
incredibly complex situation. For example consider this:

real Hypot (real a, real b) {
return sqgrt(a * a + b * b);

}

flag fLong = Hypot(x, cos(t + 4 * n)) + sqgrt(rLenSqg) * 10 > 50;

It's a terrible statement, | know. Valid, but terrible. The way the value assigned to flag fLong is
evaluated is very complex. There are functions inside parameter lists, operators that need to be
evaluated in a certain order, and comparisons of the result with variable type conversions. The

ArtRage engine is unable to save the state of this (it’s a recursive nightmare...) if it were to encounter
a ‘Wait:’ directive inside the Hypot function. Fortunately there isn’t one.

If, however, your function contained scraps of recorded ArtRage script it will probably have lines
with ‘Wait:” directives.

When a function with a defined type contains a ‘Wait:’ directive the wait is completely ignored. The
script ignores the delay and carries on immediately processing the next statement after the ‘Wait:’
directive. Example of using a ‘Wait:’ directive in a function:

void SetToolSize(real rSize) { // Sets the size of the currently selected tool.

int nID = 0x0B2D05E64;

Wait: 0.018s

EvType: Command CommandID: SetToolProperty ParamType: ToolProp Value: { nID (Size), rSize }
}

SetToolSize (0.5);

The above is valid. | was lazy and cut’'n’pasted the command line from a recorded script, so the
‘Wait:’ directive was included (but isn’t actually required). The function can safely be called
anywhere. However the following example wont respect the ‘Wait:’ directive:

void PaintFlower (real x, real y) {

SetToolSize (0.5); // As above.

.. // code to paint flower in the Monet style - very pretty.
}
flag RateMyFlower () {

PaintFlower (200, 100);

return YesNoBox ("Do you like my flower?");

}

flag fLovely = RateMyFlower();
The SetToolSize function is valid as a void function with a ‘Wait:’ directive. The PaintFlower function

is valid as a void function that calls a function that contains a ‘Wait:’ directive. However the
RateMyFlower function returns a value, and it calls functions that contain ‘Wait:’ directives. This
will cause the script engine to ignore all the ‘Wait:’ directives inside PaintFlower and SetToolSize -
the flowers would be painted at the fastest speed possible. Therefore it is very important to be
aware of where your wait directives are being used if you want them to actually wait.

Built-in functions

The ArtRage script engine supports many built-in functions. These are pre-defined functions which
you can call, for some common tasks. Most of the C-Language mathematical functions are built in.
Also the ArtRage script engine has functions to return and change information about strings. The
script engine has functions for getting and setting parameters relating to the painting file and
painting. And it has some general-purpose functions for interacting with the user as the script is
being run.

Math functions
Most of the standard C-Language mathematical functions are included and built-in to the scripting
language.

Table 2: Built-in math functions

Function Function declaration Description Example
Name

sin real sin(real r) Calculates and returns the sin of angle r (in radians) real t = sin(3.1415926);
cos real cos(real r) Calculates and returns the cosine of angle r (in radians) | real t = cos(2 * pi);
tan real tan(real r) Calculates and returns the tangent of angle r (in real t = tan(rDir);
radians)
asin real asin(real r) Returns the arcsine of r. Return value is in the range of real r = asin(t);
0 —m radians
acos real acos(real r) Returns the arccosine of r. Return value is in the range real rAngle = acos(t) / pi * 360
of 0 — i radians.
atan real atan(real r) Returns the arctangent of r. Return value is in the real r = atan(t);
range of -1t /2 —m /2 radians
atan2 real atan2(real y, real x) Returns the arctangent of y/x (if x equals 0, atan2 real r = atan(rHeight, rwidth);
returns 1/2 if y is positive, -1/2 if y is negative, or 0 if y
is 0.)
sqrt real sqrt(real r) Returns the square root of r. If r is negative sqrt will real rLen =sqrt(a *a+b * b);
return an invalid number.
abs int abs(int n) Return the absolute (positive) value of the argument. int n = abs(x);
This is equivalent to the C-Language ‘abs’ function. if (abs(xa - xb) > 20) fMoved = yes;
fabs real abs(real r) Return the absolute (positive) value of the argument. real r = fabs(x);
This is equivalent to the C-Language ‘fabs’ function. real rRoot = sqrt(fabs(dx));
exp real exp(real r) Return exponent of r. That is e to the power r, where e real r = exp(rVv);
is the base of the natural logarithm.
log real log(real r) Return the natural logarithm (base e) of r real r = log(rVval);
log10 real log10(real r) Return the base 10 logarithm of r real r = log10(rVal);
pow real pos(real x, real y) Returns x raised to the power of y real rCubed = pow(r, 3);
mod int mod(int x, inty) Returns the remainder of the integer division of x / y. int n = mod(a, b)
if (mod(n) == 0) fDivN = yes
fmod real fmod(real x, real y) Returns the remainder of the floating point division of real r =fmod(ry, ry)

x/y.

real rDecimal = fmod(rLen, 1);

String manipulation functions
The ArtRage script language includes built-in functions to work with text strings. The functions are

called on the string variable with a dot *.’ then the function name. For example: n = s.Length() sets

the integer variable named ‘n’ to the length of the string variable named ‘s’.

Table 3: String functions

Function Function declaration Description Example
Name
Length int Length() Returns the number of characters in string. string s = “ArtRage”
If this an empty string, Length returns 0 intn=s.Length(); //n=7
int nLen = (sFirst + sLast).Length();
Left string Left(int n) Return the leftmost n characters from string. | string s = “ArtRage”
If n is greater than the length of string, all of string a = s.Left(3); // a = "Art”
string is returned. string sInitial = sName.Left(1);
Right string Right(int n) Return the rightmost n characters from string s = “ArtRage”
string. If nis greater than the length of string sRag =s.Right(4); // sRag = "Rage"
string all of string is returned.
Mid string Mid(int nStart, int nLen) Return the string from string which starts at string s = “ArtRage”
the character index nStart and has length s=s.Mid(2, 4); // s = "tRag"
nLen characters. Index is zero-based.
ToUpper void ToUpper() Sets string to be all uppercase string sShout ="hello.”
sShout.ToUpper()
TolLower void ToLower() Returns the all lowercase version of s string sReply = “YES?”
sReply.ToLower();
Trim void Trim() Removes whitespace from the start and end string sClean = sinput.Left(4)
of the string. Whitespace includes spaces, sClean.Trim()
tabs, and carriage returns.
ClipLeft void ClipLeft(int n) Removes leftmost n characters from string string s = “ArtRage”
s.ClipLeft(3); // s = "Rage"
ClipRight void ClipRight(int n) Removes rightmost n characters from string string s = “ArtRage”
s.ClipRight(4); // s = "Art"
Find int Find(string sFind) If the string sFind exists as a substring of string s = “ArtRage”

string, return the index of the first character
sFind inside string. If not found returns -1.
The search is case-sensitive

int n =s.Find("Rage"); //n=3
n =s.Find("rage"); //n=-1
s.ToUpper(); n = s.Find(“RAGE”); //n=3

SetHex void SetHex(int n)

Sets the contents of the string to a
Hexadecimal (base 16) representation of the
integer value ‘n’. The hex string is prefixed
with ‘Ox0’. The hex string represents either
an 8-bit, 16-bit, or 32-bit number, depending
on the magnitude of ‘n’

string s; s.SetHex(31); // s = 0x01f
n =257

s.SetHex(n * 2); // s = 0x00202
s.SetHex(-1); // s = OxOffffffff

Array functions

These functions work on the dynamic array variables (realarray, intarray, stringarray and flagarray).

They are called on the dynamic array variable with a dot ‘.’ then the function name. For example: n

= a.GetSize() sets the integer variable named ‘n’ to the number of elements in the dynamic array

variable named ‘a’.

Table 4: Dynamic Array functions

Function Function declaration Description Example
Name
SetSize void SetSize(int n) Set the number of elements in the array. stringarray aMonth
Either expands or shrinks the array to match aMonth.SetSize(12)
the requested size. aMonth.SetSize(nMarsMonths)
GetSize int GetSize() Return a count of the number of elements in | n=aMonth.GetSize()
the array. if (aDays.GetSize() == 7)...
Add void Add(<type> n) Add an element to the end of the array. ‘n’ aMonth.Add(“January”)
must be a type of value the array type aAge.Add(nToday — nBirthday)
supports. For example with an intarray ‘n’ aPrime.Add(7)
should evaluate to an int.
Add void Add(<array type> a) Add an entire array to the end of this array. stringarray sDays = { “Mon”, “Tue” }
Equivalent to the ‘+=" operator for arrays. stringarray sNights = {“Wed”, “Thu” }
Array ‘a’ must be the same array type as sDays.Add(sNights)
this. For example with an intarray ‘a’ must // Result is sDays = {“Mon”, “Tue”,
also be an intarray “Wed”, “Thu”}
Copy void Copy(<array type> a) Replace our entire contents with the intarrayaNum ={1, 2,3,4}
contents of array ‘a’. Equivalent to the ‘=’ intarray aPrime={1,2,3,5}
operator for arrays. Array ‘a’ must be the aNum.Copy(aPrime)
same array type as this. For example with
an intarray ‘a’ must also be an intarray
InsertAt void InsertAt(int nPos, <type> n) Insert an element into the array at index intarray aNum ={ 10, 20, 30 }
nPos (zero-based index). ‘n” must be a type aNum.InsertAt(1, 15)
of value the array type supports. For // Result is aNum = { 10, 15, 20, 30 }
example with an intarray ‘n’ should evaluate
to anint.
InsertAt void InsertAt(int nPos, <array Insert an entire array element into the array stringarray s = {“a”, “e”, “f" }
type> a) at index nPos (zero-based index). Array ‘a’ stringarray s2 = { “b”, “c”}
must be the same array type as this. For s.InsertAt(1, s2)
example with an intarray ‘a’ must also be an // Resultis s = {“a”, “b”, “c”, “d”, “e”, “f"}
intarray
RemoveAt void RemoveAt(int nPos) Remove one of the elements from the array stringarray d = {“Mon”, “Tue”, “Wed"}
at the index (zero based) ‘nPos’ d.RemoveAt(0); // 1 don’t like Mondays
// Result is d = {“Tue”, “Wed”}
RemoveAt void RemoveAt(int nPos, int Remove nCount number of elements from stringarray d = {“Mon”, “Tue”, “Wed"}
nCount) the array at the index (zero based) ‘nPos’ d.RemoveAt(1, 2); // Two days off
// Result is d = {“Mon”}
Move void Move(int nSrc, int nDst) Move an element in the array from position intarrayn={2,4,6,8}
‘nSrc’ to the position ‘nDst’ (both zero- n.Move(1, 0)
based). // Resultisn={4, 2, 6, 8}

File Variable functions
This group of functions work on the ArtRage script variable type ‘file’. These functions are called on

the file variable with a dot “.’ then the function name. For example: n = fDoc.Length() sets the

integer variable named ‘n’ to the length (in bytes) of the file described by the file variable called

‘fDoc’.

Table 5: File Variable functions

Function Name | Function declaration Description Example
Open flag Open(string s) Open the file at the path given by ‘s’ for read file filDoc;
flag Open(string s, flag and write access (or optionally read-only). flag f = filDoc.Open(“C:/banana.txt”); //
fReadOnly) Returns ‘true’ if the file could be opened or open for read and write access.
‘false’ if opening the file failed. You need to f = filDoc.Open(“D:/News.doc”, true); //
open a file before you can read or write data Opened for read-only
to it.

Close flag Close() Close the file. Closing a file ensures all datais | filDoc.Close();
completely written to the file and allows
other file variables to access the file. Itisn’t
mandatory to close a file you have opened -
when the file variable falls out of scope the
file is automatically closed.

LoadDialog flag LoadDialog() Brings up a file browser to allow the user to flag fSuccess = filDoc.LoadDialog();
choose a file to open for reading. If the file if (fSuccess) ... // do something with the
exists and can be opened for read-only access | file
the file is opened and ‘true’ is returned. If the | else {... // file couldn’t be opened.
file cant be opened or the user cancels, ‘false’
is returned.

SaveDialog flag SaveDialog(string Brings up a file browser to allow the user to flag fYes = filDoc.SaveDialog(“score.txt”)

sName) choose a file to save to. sName gives the if (fYes) {... // You can write and read
default name, but that can be changed by the | this file
user. If the file can be opened for read-write else {... // Failed. Do something else.
access, it is opened and ‘true’ is returned. If
the user cancels or the open fails, ‘false’ is
returned.

Name string Name() Return the filename of the file. This is set s = filDoc.Name()
when the file is opened (either with Open() or | filDoc.LoadDialog();
with the file dialogs) if (filDoc.Name() == “fish.txt”)...

FullPath string FullPath() Returns the full path including the name of s = filDoc.FullPath();
the file. This is set when the file is opened filDoc.SaveDialog(“Scores.txt”);

(either with Open() or with the file dialogs) if (filDoc.FullPath() == sOlId) ...

Length int Length() Returns the length (in bytes) of the opened int nBytes = filDoc.Length()
file. If the file is not open or valid, -1 is if (filDoc.Length() <4) {.. // short or
returned. invalid file?

SetLength flag SetLength(int n) Set the length of the file to the number of file filScore;
bytes given in ‘n’. If ‘n’ is shorter than the filScore.SaveDialog(“Scores.txt”);
current file length, the file is shortend. If ‘n’is | filScore.SetLength(1000);
longer, the file is lengthened and the
contents are invalid until overwritten.

Pos int Pos() Get the byte position in the opened file int n =filDoc.Pos(); // Get the current
where the next read or write will occur. If the | file position
file isn’t open or is invalid, -1 is returned. if (filDoc.Pos() > filDoc.Length() - 4) { ... //

near the end of the file.

SetPos flag SetPos(int n) Set the byte position in the opened file where | filDoc.SetPos(0); // At the start.
the next read or write will occur. If the filDoc.SetPos(filDoc.Length()); // at the
position is a valid location in the file, and the end
SetPos success, return ‘true’. Returns ‘false’ filDoc.SetPos(filDoc.GetPos() + 4); // Skip
on failure. a 32-bit integer.

ReadUint8 int ReadUint8() Read and return a single byte (8 bits) from int n = filDoc.ReadUint8(); // 0 — 255

ReadInt8 int ReadInt8() the opened file. On success the file current int m = filDoc.ReadInt8(); // -127 to +127
location (Pos()) is incremented by one byte.

ReadUint8() returns the value as an unsigned

inteter in the range 0 to 255. ReadInt§()

returns the value as a signed integer in the

range -127 to +127.
ReadUint16 int ReadUint16() Read and return a double byte word (16 bits) int n = filDoc.ReadUint16(); // 0 — 65535
ReadIntl16 int ReadInt16() from the opened file. On success the file int m = filDoc.ReadInt16(); // -32767 to

current location (Pos()) is incremented by two
bytes.

ReadUint16() returns the value as an
unsigned inteter in the range 0 to 65535
ReadInt16() returns the value as a signed
integer in the range -32767 to +32767.

+32767

ReadUint32 int ReadUint32() Read and return a 4- byte word (32 bits) from | int n = filDoc.ReadUint32();
ReadInt32 int ReadInt32() the opened file. On success the file current int m = filDoc.ReadInt32();
location (Pos()) is incremented by four bytes. // Both return values in the range
Both ReadUint32() and ReadInt32() return the | -2,147,483,647 to +2,147,483,647
value as a signed integer in the range -2731
to +2731 because that’s the largest value an
int variable can contain.
ReadString string ReadString() Read and return a Unicode UTF-16 string (two | sName = filDoc.ReadString()

bytes per character) from the file, up to the
next carriage-return + line-feed. (0x000d,
0x000a). If the string wasn’t written with a
carriage-return + linefeed pair, the returned
string will be invalid. The file pointer is
incremented to the first byte past the cr/If
pair.

sName.TrimRight(); // get rid of cr/If

ReadAsciiString

stringReadAsciiString()

Read an Ascii string (one byte per character)
from the file, up to the next carriage-return +
linefeed. (0x0d, Ox0a).

The string is then converted to UTF-16 and
returned.

sDate = filDoc.ReadAsciiString();

WriteUint8 flag WriteUint8(int n) Write a single byte (8 bits) to the opened file. intn =200

Writelnt8 flag WriteInt8(int n) On success the file current location (Pos()) is flag f = filDoc.WriteUint8(n); // 0x0C8
incremented by one byte, and ‘true’ is written to file
returned. If the value couldn’t be written, f = filDoc.Writelnt8(n);// 0x0C8 also
‘false’ is returned. The effect of WriteUint8() written to file.
and WriteInt8() is the same — both write the filDoc.WriteUint8(-1000); // 0x018
least-significant 8 bits of ‘n’ to the file. written to file. (-1000 = OxOfffffc18)

WriteUint16 flag WriteUint16(int n) Write two bytes (16 bits) to the opened file. int n = 2000

Writelnt16 flag Writelnt16(int n) On success the file current location (Pos()) is flag f = filDoc.WriteUint16(n); // 0x07D0
incremented by two bytes, and ‘true’ is written to file
returned. If the value couldn’t be written, f = filDoc.Writelnt16(n);// 0x07DO0 also
‘false’ is returned. The effect of written to file.
WriteUint16() and Writelnt16() is the same — | filDoc.WriteUint16(-1000); // OXOFC18
both write the least-significant 16 bits of ‘n’ written to file. (-1000 = OxOfffffc18)
to the file.

WriteUint32 flag WriteUint32(int n) Write four bytes (32 bits) to the opened file. int n = 0x0ff2050ff

Writelnt32 flag WriteInt32(int n) On success the file current location (Pos()) is flag f = filDoc.WriteUint16(n); //
incremented by four bytes, and ‘true’ is 0x0ff2050ff written to file
returned. If the value couldn’t be written, f = filDoc.Writelnt16(n);// Ox0ff2050ff
‘false’ is returned. The effect of also written to file.
WriteUint32() and Writelnt32() is the same — | filDoc.WriteUint16(-1000); //
both write all four bytes of ‘n’ to the file. OxOFFFFFC18 written to file. (-1000 =

0xOfffffc18)
WriteString flag WriteString(string s) Write the text string in ‘s’ to the open file asa | flag f = filDoc.Write(“Ha!”); // “Ha!/r/n”

UTF-16 (two bytes per character) string. Then
write carriage-return + linefeed (0x000d,
0x000a) characters to the file. On success the
file pointer is incremented past the cr/If pair
and ‘true’ is returned. If the string couldn’t
be written ‘false’ is returned.

Simply put: WriteString(s) writes the string
that ReadString() will read.

is actually written to file:

0x00048, 0x00061, 0x00021, 0x0000D,
0x0000A

Bytes: 48 00 61 00 21 00 0D 00 OA 00

WriteAsciiString

flag WriteAsciiString
(string s)

Write the text string in ‘s’ to the open file as
an Ascii (one byte per character) string. Then
write carriage-return + linefeed (0x0d, 0x0a)
characters to the file. On success the file
pointer is incremented past the cr/If pair and
‘true’ is returned. If the string couldn’t be
written ‘false’ is returned.

Simply put: WriteAsciiString(s) writes the
string that ReadAsciiStrig() will read.

flag f = filDoc.Write(“Ha!”); // “Ha!/r/n”
is actually written to file:

0x048, 0x061, 0x021, 0x00D, OXO0A
Bytes: 48 61 21 0D OA

ArtRage system functions.

This group of functions gets and sets information from ArtRage and from the painting. There are
some sub-groups of functions relating to colour, mouse/keyboard input, transformation spaces, and
miscellaneous.

Paint colour functions.
These functions affect the currently selected paint colour in ArtRage. You can get and set the values
in RGB space or HLS space.

Table 6: ArtRage paint colour functions

Function Name | Function declaration Description Example
ColourH real ColourH() Returns the Hue value of the currently real rHue = ColourH();
selected paint colour. Range 0 - 1
ColourL real ColourL() Returns the Luminance value of the real rLum = ColourL();
currently selected paint colour. Range 0—1
ColourS real ColourS() Returns the Saturation value of the real rSat = ColourS();
currently selected paint colour. Range 0 - 1
ColourR real ColourR() Returns the Red channel of the currently real rRed = ColourR();
selected paint colour. Range 0 — 1
ColourG real ColourG() Returns the Green channel of the currently real rGreen = ColourG();
selected paint colour. Range 0—1
ColourB real ColourB() Returns the Blue channel of the currently real rBlue = ColourB();
selected paint colour. Range 0—1
ColourMetal real ColourMetal() Returns the Metallic channel of the real rMetal = ColourMetal();
currently selected paint colour. Range 0 — 1
SetColourHLS void SetColourHLS(real H, real L, Sets the current paint colour with the HLS SetColourHLS(0.3, 0.5, 1.0); // A loud
real S) values (in range 0 — 1). Note this will also colour
affect the RGB values. SetColourHLS(cos(rAng), ColourL(), 0);
SetColourRGB void SetColourRGB(real R, real G, Sets the current paint colour with the RGB SetColourRGB(1, 0, 1); // Magenta!
real B) channel values (in range 0 — 1). Note this SetColourRGB(ColourR() / 2, ColourG(),
will also affect the HLS values. ColourB()); // Fade the red a bit.
SetColourMetal | void SetColourMetal(real m) Sets the metallic channel of the current SetColourMetal(0); // No metallic
paint colour. mis in range 0 — 1 SetColourMetal(0.3); // Pearlescent

Layer Property functions.
These functions get information about layers in the current ArtRage painting.

Table 7: Painting Layer Property functions

Function Name Function declaration Description Example
CurrentLayerindex int CurrentLayerindex() Get the index of the current selected layer. int nLayer = CurrentLayerindex();
LayerCount int LayerCount Get a count of the layers in the painting int nLayerCount = LayerCount();
LayerName string LayerName(int n) Get the name of the layer ‘n’ in the string s = LayerName(0);
painting.
LayerOpacity real LayerOpacity(int n) Get the opacity (0 to 1) of the layer ‘n” in real rOpac = LayerOpacity(1)
the painting
LayerVisible flag LayerVisible(int n) Get visibility flag for layer ‘n’ in the painting | flag fVisible = LayerVisible(0)
if (LayerVisible(1)) {...
LayerBlendMode int LayerBlendMode(int n) Get the blend mode for the layer ‘n” in the int nMode = LayerBlendMode(1);
painting.
LayerBumpBlendMode | int LayerBumpBlendMode(int Get the bump blending mode for the layer int m = LayerBumpBlendMode(2)
n) ‘n’ in the painting.
LayerType int LayerType(int n) Get the layer type for layer ‘n’. Layer types int nType = LayerType(n);
are: 0 = Paint, 1 = Group Open, 2 = Group if (LayerType(n) !=0) { // Not paint
Closed, 3 = Group End marker, 4 = Text layer
layer, 5 = Sticker layer
LayerPreserveTrans flag LayerPreserveTrans(int n) Get the transparency preserve flag for the flag fLock = LayerPreserveTrans(1)
layer 'n’. if (LayerPreserveTrans(n)) {...

Mouse/Keyboard functions.
These functions get values from the mouse/stylus/graphics tablet input device, or from the

keyboard. The Wait- functions can stop script execution until the user does a mouse action.

Note: These functions aren’t currently supported by the ArtRage Ul — currently scripts run ‘modally’,

and don’t allow user interaction. These functions will be enabled in a future release of ArtRage.

Table 8: Mouse/keyboard functions

Function Name

Function declaration

Description

Example

SampleMouse

void SampleMouse()

Causes the script to sample the
mouse/graphics tablet. The sampled values
are stored for access by other functions

SampleMouse();

MouseX real MouseX() Get the sampled mouse X coordinate in real x = MouseX();
canvas pixel coordinates.

MouseY real MouseY() Get the sampled mouse Y coordinate in real y = MouseY();
canvas pixel coordinates.

MousePressure real MousePressure() Get the sampled pressure value from the real rPressure = MousePressure();
graphics tablet or stylus input device. Range | if (MousePressure() > 0.9) fHeavy = Yes;
0-1

MouseTilt real MouseTilt() Get the sampled tilt value from the graphics real rTilt = MouseTilt();

tablet or stylus input device. Range (0=
horizontal, 1 = vertical)

MouseOrientation

real MouseOrientation()

Get the sampled rotation value from the
graphics tablet or stylus input device. Range
0—-1. If Tiltis 1, this value is meaningless.

real rRotation = MouseOQrientation();

Mouselnverted

flag Mouselnverted()

Get the sampled stylus device’s inverted
state. True if the stylus eraser end is being
used (at the time of the SampleMouse())

flag fErase = Mouselnverted();
if (Mouselnverted()) fDeadMouse = yes;

WaitResumeAtMouse

void WaitResumeAtMouse()

Stops script execution until the user clicks
the mouse in the canvas, then offset strokes
to be at mouse point. It also updates
SampleMouse values.

WaitResumeAtMouse(); // Stop for click
— next played-back stroke will be at
mouse.

WaitSampleMouse

void WaitSampleMouse()

Stops script execution until the user moves
or clicks the mouse. It will update the
SampleMouse values and carry on.

WaitSampleMouse(); // Stop until click
or mouse move.
if (fDone) WaitSampleMouse();

MouseEventType

int MouseEventType()

Sampled mouse/stylus event type:
0 = MouseStart, 1 = MouseContinue,
2 = MouseEnd, -1 = Unknown

int nEvent = MouseEventType();
if (MouseEventType() == 2) fUp = true;

MouseButtonlsDown

flag MouseButtonlsDown()

Returns true if the mouse button is down.
This is the state of the button when
MouseButtonlsDown() is called, not the
stored mouse values.

flag fDown = MouseButtonlsDown();
while (MouseButtonlsDown()) {...

KeyShiftlsDown

flag KeyShiftlsDown()

Return true if either shift key on the
keyboard is down.

flag fConstrain = KeyShiftlsDown();
if (KeyShiftlsDown()) {...

KeyCtrllsDown

flag KeyCtrlisDown()

Return true if either of the Ctrl keys on the
keyboard is down. (Command key on Mac
keyboards)

flag fMove = KeyCtrlisDown();
while (KeyCtrllsDown()) {...

KeyAltlsDown

flag KeyAltlsDown()

Return true if either Alt key on the keyboard
is down. (Option key on Mac keyboards)

flag fRot = KeyAltlsDown();

Transformation space functions.
Transformations allow the script engine to playback a recorded script in a different position, or at a
different size and aspect, or at a different angle. Transformations can be pushed onto a stack,
changed, then popped off the stack to restore the transformations prior to change. The
transformation stack also stores the currently selected paint colours (see Paint colour functions.)

Table 9: Transformation functions

Function Name

Function declaration

Description

Example

TransScaleX

real TransScaleX()

Returns the current transformation scaling in the
horizontal direction. The amount stroke positions
are squashed or stretched.

real rScaleX = TransScaleX();

TransScaleY

real TransScaleY()

Returns the current transformation scaling in the
vertical direction.

real rScaleY = TransScaleY();
if (TransScaleY() > TransScaleX() * 2)
fWideScreen = true;

TransCentreX

real TransCentreX()

Returns the X value of centre of rotation for scale
and rotation transformations. Result is in canvas
pixel coordinates. Defaults to half canvas width.

real rXCentre = TransCentreX();

TransCentreY

real TransCentreY()

Returns the Y value of centre of rotation for scale
and rotation transformations. Result is in canvas
pixel coordinates. Defaults to half canvas height.

real rYCentre = TransCentreY();

TransOffsetX

real TransOffsetX()

Returns thehorizontal amount strokes will be offset
(in canvas pixel coordinates) from their recorded
position

real rOffX = TransOffsetX();

TransOffsetY

real TransOffsetY()

Returns the vertical amount strokes will be offset
(in canvas pixel coordinates) from their recorded
position

real rOffX = TransOffsetX();

TransRotation

real TransRotation()

Returns the angle in radians (O - 2 1) strokes will be
rotated around the centre of rotation.

real rAng = TransRotation();
if (TransRotation() == rPi) fUpsideDown =
yes;

SetTransScale

void SetTransScale(real
X, real'y)

Set the amount of horizontal and vertical scaling
applied to paint strokes as they are played back.
The scale also affects the tool size values (average
scale of Xand Y)

SetTransScale(2, 1); // Wide
SetTransScale(1, 1); // Normal
SetTransScale(TransScaleX() * 2,
TransScaleY * 2); // Twice as big as it was

SetTransCentre void SetTransCentre(real | Set the centre point in canvas pixel coordinates for SetTransCentre(500, 500);
X, real y) scale and rotation operations.
SetTransOffset void Set TransOffset(real | Setthe amount strokes will be offset from their SetTransOffset(100, 0);

X, real y)

recorded position when they’re played back. X and
y are in canvas pixel coordinates.

SetTransOffset(TransOffsetX() + 20,
TransOffsetY());

SetTransRotation

void
SetTransRotation(real r)

Set the angle (in radians) to rotate strokes on
playback. Rotation happens around the
TransCentre point.

SetTransRotation(0); // Not rotated
SetTransRotation(pi); // Upside down.

PushState void PushState() Push the current transformations and colour values PushState();
onto the stack.

PopState void PopState() Pop the transformations and colour values off the PopState();
stack. They are restored to how they were before
the PushState() occurred.

Message Functions.

To display a message to the person running the script use one of these functions.

Table 10: Message functions

Function Name

Function declaration

Description

Example

MessageBox void MessageBox(string s) Display a message box with the string as text of | MessageBox("Here we go!");
the message box. The script halts until the MessageBox("%%x wide/n/r%%y high");
user presses ‘ok’ in the message box.
YesNoBox flag YesNoBox(string s) Display a message box with the string as text flag fContinue = YesNoBox("Want to
and a ‘yes’ button and a ‘no’ button. The script carry on?");
halts until the user presses a button. Returns a if (YesNoBox("Is the number greater
true value for ‘yes’ and a false value for ‘no’ than %%guess? ") == yes) {...
MessageTip void MessageTip(string s) The script pops up a text message in a balloon MessageTip("This is a squiggly line");

which gradually fades out. The script isn’t
halted.

MessageTip("Notice | select the
%%sName tool here");

PlaySoundFile

void PlaySoundFile(string s)

Load and play a file in WAV format with the
filename ‘s’. Script continues executing while
the sound file plays.

PlaySoundFile("bang.wav"); // wake up!
PlaySoundFile("OdeTolJoy.wav"); // This
is a fantastic painting to watch.

InputBox void InputBox(string s) Halts execution and brings up a modal dialog string sName = "your name";
with the string s as text. Where textinsis InputBox("Enter name: $SsName");
preceded by $$ an input box to set that variable | // sName is set to the entered value.
is created in the dialog. InputBox("Size: ($Sx, SSy)");

NoteBox void NoteBox(string s, int Display a message in a box sized Width x Height | NoteBox(“Left ear”, 100, 30, 512, 384,1,

int nID)

nWidth, int nHeight, real x,
real y,int nEdge, real rDist,

pixels, pointing to location X, Y in the canvas.
The ‘tail’ of the NoteBox will try to be on the
edge (0=Top, 1 = Left, 2 = Bottom, 3 = Right) at

0.5, -1)
NoteBox(“Watch this\n\r stroke here”,
200, 80, 300, 300, 2, 0, 10);

rDist (0 — 1) along edge. If nID = -1, the box will
be modal(stops playback) with an OK button.
If nID >= 0, box will be floating and can be
dismissed with DismissNoteBox below

DismissNoteBox

void DismissNoteBox(int n)

Dismiss a non-modal NoteBox. If n=-1 then all
non-modal noteboxes will be dismissed. If n >=
0 only the notebox with that ID will be
dismissed

DismissNoteBox(-1); // Too many
noteboxes
DismissNoteBox(10); // Stroke finished.

CanvasHighlight

void CanvasHighlight(real x,
real y, real r, int nRGB)

Create a highlighted area of the canvas at the
cords x, y with a radius r. nRGB is a hex colour
value OXOAARRGGBB

CanvasHighlight(500, 500, 100,
0x0ff000000); // Look at this interesting
bit!

DismissCanvasHigh | void Dismiss the canvas highlight from the canvas DismissCanvasHighlight(); // Not
light DismissCanvasHighlight() interesting anymore
Assert void Assert(flag f) This is more of a debugging tool (possibly in the | Assert(x < PaintingWidth());

future scripts will have a debugging mode to
help developers). If f evaluates to false a
message box with a warning and script
information is displayed.

Assert(sName == "Andy");

Miscellaneous functions.
A few more functions which are jolly useful but don’t fit into a particular category.

Table 11: Miscellaneous functions

Function Name

Function declaration

Description

Example

PaintingWidth

int PaintingWidth()

Return the width of the current painting, in
pixels

int nWidth = PaintingWidth();

PaintingHeight

int PaintingHeight()

Return the height of the current painting, in
pixels

int nHeight = PaintingHeight();

PaintingDPI

int PaintingDPI()

Return the Dots-Per-Inch setting of the current
painting

int nDPI = PaintingDPI();
real rWidth = PaintingWidth();
real rSizelnches = rWidth / PaintingDPI();

CurrentToollD

int CurrentToolID()

Returns the integer ID of the currently selected
tool in ArtRage. Equivalent to the value used by
the CID_ToolSelect recorded script event to
change tool

int nTool = CurrentToolID();
if (CurrentToolID() == 4901) fPencil = yes;

CurrentToolSetting

real CurrentToolSetting(int
niD)

Return the setting with id nID from the current
tool. nID is equivalent to the property ID used
by SetToolProperty in recorded scripts.

real rToolSize =
CurrentToolSetting(0x0B2D05E64);

Random real Random() Random() returns a value between 0 and 1. real x = Random(PaintingWidth());
real Random(real r) Random(r) returns a value between 0 and r real rAge = Random(21, 31);
real Random(real a, real b) Random(a, b) returns an value between aand b | SetColourHLS(Random(), 0.5, 1); // Fun!
Noise real Noise(real x, real y) Smooth 2D Perlin noise. The period is about 1, real rVal = Noise(x / 10, y / 10);
so divide your x and y values by 10 to see noise
Cloud real Cloud(real x, real y) Smooth cloud noise. The period is about 1, so real rval = Cloud(x / 10, y / 10)
divide your x and y values by 10 to see cloud
Randomize void Randomize() Restart the random number generator from a Randomize(); // They'll never find me
random position. now.
ScriptFile void ScriptFile(string s) Branches script execution into the file with the ScriptFile("flower.arscript");

name in the string s. Useful for build scraps of
scripts. Global variables can be used to pass
values around script scraps.

SetTransOffset(100, 100);
ScriptFile("AnotherFlower.arscript");

File Functions.

These functions work on whole files. When specifying file paths ‘\" and ‘/’ can both be used.

However because ‘\ is the special character, you need to use ‘\\’ wherever you would want to use a

single ‘\” in a path name. So FileDelete(“C:\\Banana.txt”) has exactly the same effect as
FileDelete(“C:/Banana.txt”)

Table 12: File functions

Function Name Function declaration Description Example

FileExists flag FileExists(string sPath) Returns ‘true’ if a file exists at the pathname flag f = FileExists(“C:/Banana.txt”)
given by sPath. Returns ‘false’ if there is no file.

FileDelete flag FileDelete(string sPath) | Delete the file at the path given by sPath. If the flag f = FileDelete(“C:/Banana.txt”);

deletion is successful (or the file doesn’t exist)
return ‘true’, otherwise return ‘false’ if the file
couldn’t be deleted.

FileCopy flag FileCopy(string sSrc, Make a copy of the file given by sScr, and save flag f = FileCopy(“C:/Banana.txt”,
string sDst) it with the name and path given by sDst. D:/Banana.txt”)

Returns ‘true’ if the copy was successful, or
‘false’ if the copy failed. Copy keeps the
original file, and makes a new file.

FileMove flag FileMove(string sSrc, FileMove and FileRename do exactly the same. flag f = FileMove(“c:/Banana.txt”,
FileRename string sDst) Move the file given by sSrc to the location and “D:/banana.txt”);
flag FileRename(string sSrc, | with the name given by sDst. Use whichever FileRename(refA.FullPath(),
string sDst) one makes the most sense in the context of refB.FullPath())
your script.
Putting it together.

You could write an ArtRage script file entirely from scratch, declaring functions and writing code to
do something. In general you probably want to paint something, using ArtRage tools, options and
settings to give a painted result. Rather than trying to write everything from scratch it’s easiest to
record most of what you want done using the script recording functions then edit the resulting script
file with Notepad or TextEdit.

Here are some sample scripts — partially recorded and partially coded. If you want to run these
scripts copy the script into Notepad or TextEdit. Then save the text file as a Unicode file. Itis very
important to save as a Unicode text file. The ArtRage script engine will only work with UTF16
Unicode text files.

100 Flowers.

In the sample listing (Listing 1: 100 Flowers) | recorded a script to paint a single flower. Recorded
scripts are quite verbose — most of the text at the start is to put ArtRage into a ‘known’ state. Then |
opened the script with NotePad (on Windows) and made some slight changes to the script file. The
first change was to surround the entire block of recorded paint strokes with a function definition:

//
// Script data follows:
!/
<Events>

void PaintOneFlower () {

}

Following the closing bracket of the function definition | added a block of ArtRage script code to call
the ‘PaintOneFlower’ function 100 times:

Randomize () // Different each time.
for (int n = 1; n <= 100; n++) {
MessageTip ("Flower number $%n")

// Offset the flower from where it was originally painted at Loc: (525, 672)
real rOffsetX = Random(-525 + 100, PaintingWidth() - 525 - 100) // Left/Right half width

real rOffsetY = 4 * n - 672 + PaintingHeight() / 2 // Move down slightly as we go
SetTransOffset (rOffsetX, rOffsetY) // Set global transform
PaintOneFlower () // Paint the next flower.

}

The (525, 672) is the first location the script recorded when | painted the flower — look for the first
‘<EventPt>’ block. In the sample above | give the flower a random X placement between 100 and

(Painting Width() — 100), and a slowly increasing Y placement from half the height of the painting

downwards.

Then | added a couple of statements to randomly change the hue of the petals and centre of the
flower. Because this was called just after the playback of the scripted colour change, the colour of
the petals and the colour of the centre of the flower are based on the recorded colours, but with just
the Hue component of the colour selected randomly.

SetColourHLS (Random (), ColourL(), ColourS());

And those are the only changes | needed to make to the recorded script of one painted flower to
make it into 100 randomly coloured flowers painted in random positions.

Five circles.

The sample listing (Listing 2: Five Circles) is less of a recorded script and more of a script written
from ArtRage Script language statements. The script skips all the usual recorded heading and
preamble. This means whatever is played back with be working with the tools and settings the user
has chosen before playback. If the user selects the crayon tool then runs this script, five circles will
be drawn in crayon. If the user selects the watercolour brush and metallic green paint then runs the
script, five circles will be painted with the watercolour brush in metallic green.

In the listing there is a function definition: ‘void Circle(real rCX, real rCY, real rRad)’ this function
paints a circle centred on rCY, rCY with a radius rRad pixels. It paints the circle by using ArtRage
scripted commands for a <StrokeEvent> block. Inside the Circle function these lines set the location
of the stroke event:

<StrokeHeader>
<EventPt> Loc: (%, Vy) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv: NO </EventPt>
<Recorded> No </Recorded>

</StrokeHeader>

The <StrokeHeader> block sets up the stroke location, and stroke smoothing variables (which we
don’t care about generally). It also has the ‘<Recorded> No </Recorded>’ statement which lets
the playback engine know these points didn’t come from a recording. With recorded strokes the
playback engine needs to know to apply some smoothing to the stroke. If the flag is ‘No’ the
playback engine assumes the strokes are written to be played back at the exact positions specified.

Then the circle is drawn with Loc: points of varying pressure around the circumference of the circle.

When the script playback hits the </StrokeEvent> end of block it completes the stroke.

Sample ArtRage Script Code Listings

Here are a couple of sample listings of ArtRage script files. If you want to try them out, open
Notepad or TextEdit. Copy the listing text and paste into the text editor. Save the text file as
Unicode. Then you can load the script in ArtRage.

Listing 1: 100 Flowers

/7
/7
// ArtRage Script File.
/7
/7
/7
// Version Block - Script version and ArtRage version:
//
<Version>
ArtRage Version: ArtRage 3 Studio Pro
ArtRage Build: 3.0.8
Professional Edition: Yes
Script Version: 1
</Version>
//
// Header block - Info about the painting/person who generated this script:
//
<Header>
// === Project data
Painting Name: "Untitled"
Painting Width: 1280
Painting Height: 1024
Painting DPI: 72
// === Ruthor data
Author Name: "Andy Bearsley"
Script Name: "100 Flowers"
Comment: "How to paint 100 flowers"
Script Type: ""
Script Feature Flags: 0x000000001
</Header>
/7
// ArtRage project features. Sets the startup state of the script:
/7
<StartupFeatures>
Script Startup Features: {
b A b=V b bei =i iy brri— | L a—! +—1
— - 47— B P o 1
—t — o - Wt —t
o 4 — A p - g T ————o0ce
,%__I{—
—_— e - o —t—
S 1 —! I+ — —ph 1 — oo - fp————
-l
B - — + +— | — — +
— o) + — T) + +
—t - + — o
1 S ml - R P—
.] e e e i —t -—
_—t
e i - =t e -
ok N + B L e | A + +
I—F |+~ | +- + el 4
e —
i+ +- i g +
_— <m0 o b= 4 ——— = .

T = P e 4
- {4
Mgt b —— O P —
SN YA S RSN S S SRS A0S S S N TS P 1
S T N s S o s T el AP WSS
SN TRRCU AN THFCUN VS TS ot e S S S o S S S T
B
S SRS S A T S Y R S S T S S
gt A ——] H+ —
i g B LA
-t ek

e e g e <t —
Ot f—-m AR
— + A Lo m ot] + A |00t
.
} // End of Script startup feature binary data.

</StartupFeatures>

//
// Script data follows:

//

<Events>
void PaintOneFlower () { // Added this line in a text editor.
Wait: 0.000s EvType: Command CommandID: SetForeColour ParamType: Pixel Value: { OxOFFB9ASE3 }
SetColourHLS (Random(), ColourL(), ColourS()); // Added this line in a text editor.
<StrokeEvent>
<StrokeHeader>
<EventPt> Wait: 1.200s Loc: (525, 672) Pr: 0.164384 Ti: 0.633333 Ro: 0.333333
Rv: NO Iv: NO </EventPt>
<Recorded> Yes </Recorded>
<Smooth> Count: 3
Loc: (525, 672) Pr: 0 Ti: 1 Ro: 0
Loc: (524.499, 671.501) Pr: O Ti: 1 Ro: 0
Loc: (523.997, 671.003) Pr: O Ti: 1 Ro: 0
</Smooth>
<PrevA> Loc: (-158.671, 253.411) Pr: 0.243437 Ti: 1 Ro: 0 </PrevA>
<PrevB> Loc: (-142.082, 236.822) Pr: 0.391875 Ti: 1 Ro: 0 </PrevB>
<OldHd> Loc: (524, 672) Pr: 0 Ti: 0.633333 Ro: 0.333333 Dr: (0.108273, 0.994121
Hd: (-0.994121, 0.108273) </0ldHd>
<NewHd> Loc: (525, 672) Pr: O Ti: 0.644444 Ro: 0.330556 Dr: (0.204429, 0.978881
Hd: (-0.978881, 0.204429) </NewHd>
</StrokeHeader>
0.000s Loc: (524, 671) Pr: 0.41683 0.644444 Ro: 0.341667 Rv: NO Iv: NO
0.036s Loc: (523, 670) Pr: 0.48728 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.018s Loc: (522, 669) Pr: 0.503914 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.036s Loc: (521, 665) Pr: 0.561644 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.018s Loc: (520, 663) Pr: 0.585127 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.017s Loc: (518, 658) Pr: 0.610568 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.036s Loc: (517, 655) Pr: 0.632094 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.018s Loc: (517, 653) Pr: 0.634051 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.018s Loc: (517, 649) Pr: 0.635029 0.633333 Ro: 0.344444 Rv: NO Iv: NO
0.018s Loc: (517, 646) Pr: 0.637965 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (517, 643) Pr: 0.6409 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.016s Loc: (517, 637) Pr: 0.66047 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (518, 634) Pr: 0.678082 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (518, 630) Pr: 0.683953 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (518, 625) Pr: 0.68591 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (519, 623) Pr: 0.68591 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (520, 619) Pr: 0.686888 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (522, 616) Pr: 0.68591 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (524, 613) Pr: 0.68591 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (526, 611) Pr: 0.68591 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (527, 610) Pr: 0.68591 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.036s Loc: (529, 610) Pr: 0.679061 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.036s Loc: (531, 611) Pr: 0.679061 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (533, 613) Pr: 0.680039 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (535, 615) Pr: 0.680039 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (536, 619) Pr: 0.678082 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (536, 621) Pr: 0.680039 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (537, 624) Pr: 0.682975 0.633333 Ro: 0.338889 Rv: NO Iv: NO
0.018s Loc: (537, 626) Pr: 0.684932 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.036s Loc: (537, 629) Pr: 0.688845 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (536, 630) Pr: 0.691781 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (535, 633) Pr: 0.692759 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.036s Loc: (534, 636) Pr: 0.693738 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (533, 637) Pr: 0.692759 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (532, 639) Pr: 0.692759 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 641) Pr: 0.692759 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 644) Pr: 0.689824 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 648) Pr: 0.682975 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 651) Pr: 0.669276 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 653) Pr: 0.643836 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (531, 657) Pr: 0.445205 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.016s Loc: (532, 658) Pr: 0 0.622222 Ro: 0.347222 Rv: NO Iv: NO
</StrokeEvent>
<StrokeEvent>
<StrokeHeader>
<EventPt> Wait: 0.638s Loc: (533, 673) Pr: 0.167319 Ti: 0.633333 Ro: 0.338889 Rv:
NO Iv: NO </EventPt>
<Recorded> Yes </Recorded>
<Smooth> Count: 3
Loc: (533, 673) Pr: O Ti: 1 Ro: 0
Loc: (532.687, 672.689) Pr: O Ti: 1 Ro: 0
Loc: (532.375, 672.378) Pr: O Ti: 1 Ro: 0
</Smooth>
<PrevA> Loc: (531, 657) Pr: 0.445205 Ti: 0.622222 Ro: 0.347222 </PrevA>
<PrevB> Loc: (531, 653) Pr: 0.643836 Ti: 0.622222 Ro: 0.347222 </PrevB>
<OldHd> Loc: (532, 673) Pr: 0 Ti: 0.633333 Ro: 0.333333 Dr: (-0.974455, 0.224581
Hd: (-0.224581, -0.974455) </0ldHd>
<NewHd> Loc: (533, 673) Pr: 0 Ti: 0.633333 Ro: 0.333333 Dr: (-0.94756, 0.319578
Hd: (-0.319578, -0.94756) </NewHd>
</StrokeHeader>
Wait: 0.000s Loc: (533, 671) Pr: 0.368885 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.018s Loc: (534, 670) Pr: 0.412916 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.018s Loc: (535, 668) Pr: 0.456947 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.036s Loc: (539, 666) Pr: 0.508806 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.019s Loc: (541, 664) Pr: 0.547945 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.018s Loc: (542, 661) Pr: 0.567515 0.622222 Ro: 0.336111 Rv: NO Iv: NO
Wait: 0.016s Loc: (547, 657) Pr: 0.592955 0.622222 Ro: 0.338889 Rv: NO Iv: NO
Wait: 0.018s Loc: (548, 656) Pr: 0.599804 0.622222 Ro: 0.338889 Rv: NO Iv: NO
Wait: 0.010s Loc: (553, 653) Pr: 0.607632 0.622222 Ro: 0.338889 Rv: NO Iv: NO
Wait: 0.018s Loc: (554, 652) Pr: 0.618395 0.622222 Ro: 0.338889 Rv: NO Iv: NO
Wait: 0.018s Loc: (558, 649) Pr: 0.632094 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (559, 648) Pr: 0.644814 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.014s Loc: (564, 645) Pr: 0.651663 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (566, 644) Pr: 0.651663 0.622222 Ro: 0.341667 Rv: NO Iv: NO
0.018s Loc: (569, 642) Pr: 0.654599 0.622222 Ro: 0.347222 Rv: NO Iv: NO
0.018s Loc: (572, 641) Pr: 0.652642 0.633333 Ro: 0.35 Rv: NO Iv: NO
0.006s Loc: (577, 639) Pr: 0.65362 0.633333 Ro: 0.35 Rv: NO Iv: NO

0.018s Loc: (580, 639) Pr: 0.65362
0.018s Loc: (582, 638) Pr: 0.65362
0.018s Loc: (584, 638) Pr: 0.65362
0.018s Loc: (586, 638) Pr: 0.652642
0.018s Loc: (588, 638) Pr: 0.651663
0.018s Loc: (590, 639) Pr: 0.650685
0.018s Loc: (591, 641) Pr: 0.648728
0.018s Loc: (592, 642) Pr: 0.649706
0.018s Loc: (592, 645) Pr: 0.657534
0.018s Loc: (592, 647) Pr: 0.66047
0.018s Loc: (591, 649) Pr: 0.662427
0.036s Loc: (589, 651) Pr: 0.657534
0.018s Loc: (587, 653) Pr: 0.654599
0.018s Loc: (585, 655) Pr: 0.65362
0.036s Loc: (582, 656) Pr: 0.65362
0.018s Loc: (581, 657) Pr: 0.654599
0.018s Loc: (578, 659) Pr: 0.649706
0.018s Loc: (575, 660) Pr: 0.638943
0.018s Loc: (574, 661) Pr: 0.636008
0.018s Loc: (570, 661) Pr: 0.626223
0.018s Loc: (567, 662) Pr: 0.624266
0.018s Loc: (563, 663) Pr: 0.624266
0.013s Loc: (558, 665) Pr: 0.622309
0.018s Loc: (556, 665) Pr: 0.610568
0.018s Loc: (552, 668) Pr: 0.600783
0.018s Loc: (551, 669) Pr: 0.546967
Wait: 0.014s Loc: (550, 672) Pr: 0
</StrokeEvent>
<StrokeEvent>
<StrokeHeader>
<EventPt> Wait: 0.579s Loc: (534, 675
NO Iv: NO </EventPt>
<Recorded> Yes </Recorded>
<Smooth> Count: 3
Loc: (534, 675) Pr: O Ti:
Loc: (534.469, 674.548) Pr: O
Loc: (534.937, 674.096) Pr: 0
</Smooth>
<PrevA> Loc: (551, 669) Pr: 0.546967
<PrevB> Loc: (552, 668) Pr: 0.600783
<OldHd> Loc: (534, 674) Pr: O Ti:
0.442023) Hd: (0.442023, -0.897004) </0ldHd>
<NewHd> Loc: (534, 675) Pr: 0 Ti:
0.308615) Hd: (0.308615, -0.951187) </NewHd>
</StrokeHeader>
Wait: 0.000s Loc: (536, 675) Pr: 0.531311 Ti:
Wait: 0.018s Loc: (538, 675) Pr: 0.543053 Ti:
0.017s Loc: (543, 677) Pr: 0.561644
0.018s Loc: (546, 678) Pr: 0.582192
0.018s Loc: (548, 678) Pr: 0.597847
0.018s Loc: (551, 680) Pr: 0.618395
0.018s Loc: (554, 680) Pr: 0.637965
0.018s Loc: (557, 681) Pr: 0.658513
0.006s Loc: (563, 682) Pr: 0.669276
0.018s Loc: (566, 683) Pr: 0.682975
0.018s Loc: (569, 684) Pr: 0.694716
0.018s Loc: (571, 685) Pr: 0.699609
0.018s Loc: (573, 687) Pr: 0.710372
0.018s Loc: (574, 689) Pr: 0.712329
0.018s Loc: (575, 691) Pr: 0.714286
0.018s Loc: (578, 695) Pr: 0.715264
0.036s Loc: (579, 698) Pr: 0.717221
0.018s Loc: (579, 700) Pr: 0.719178
0.018s Loc: (579, 702) Pr: 0.721135
0.018s Loc: (578, 704) Pr: 0.720157
0.018s Loc: (577, 706) Pr: 0.717221
0.018s Loc: (574, 708) Pr: 0.716243
0.018s Loc: (572, 709) Pr: 0.713307
0.018s Loc: (570, 709) Pr: 0.712329
0.018s Loc: (567, 709) Pr: 0.708415
0.018s Loc: (564, 709) Pr: 0.707436
0.018s Loc: (560, 708) Pr: 0.701566
0.018s Loc: (558, 707) Pr: 0.696673
0.018s Loc: (556, 705) Pr: 0.697652
0.018s Loc: (555, 704) Pr: 0.696673
0.018s Loc: (554, 703) Pr: 0.693738
0.018s Loc: (553, 702) Pr: 0.681996
0.018s Loc: (552, 701) Pr: 0.672211
0.018s Loc: (551, 698) Pr: 0.67319
0.018s Loc: (550, 695) Pr: 0.675147
0.018s Loc: (549, 693) Pr: 0.675147
0.018s Loc: (548, 690) Pr: 0.683953
0.018s Loc: (545, 687) Pr: 0.686888
0.018s Loc: (543, 684) Pr: 0.688845
0.014s Loc: (537, 681) Pr: 0.68591
0.018s Loc: (535, 680) Pr: 0.646771
0.018s Loc: (530, 680) Pr: 0.417808
0.005s Loc: (527, 680) Pr: O
</StrokeEvent>
<StrokeEvent>
<StrokeHeader>
<EventPt> Wait: 0.563s Loc: (526, 684
NO Iv: NO </EventPt>
<Recorded> Yes </Recorded>
<Smooth> Count: 3
Loc: (526, 684) Pr: O Ti:
Loc: (526.174, 684.842) Pr: O
Loc: (526.349, 685.683) Pr: O
</Smooth>
<PrevA> Loc: (530, 680) Pr: 0.417808
<PrevB> Loc: (535, 680) Pr: 0.646771

OO0 000O0O00OO0OO0O0O0O0OO0OOOOOOOOO OO O O

o

o

OO0 0000000000O00O0O000O00O0O0O0O00O0OO0OO0OO0OO0O0O0O0OO0OOOO 00O

.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.633333
.622222

Pr: 0.143836 Ti:

Ro:
Ti:
Ti:

Ti:
Ti:

.622222

.622222

.622222
.622222
.622222
.622222
.622222
.622222
.633333
.633333
.633333
.633333
.644444
.644444
.644444
.644444
.644444
.644444
.655556
.644444
.655556
.655556
.655556
.655556
.655556
.655556
.655556
.655556
.666667
.666667
.666667
.666667
.666667
.666667
.666667
.655556
.655556
.655556
.644444
.644444
.644444
.644444
.644444
.622222
.622222

Pr: 0.186888 Ti:

Ti:
Ti:
Ti:
Ti:

Ro:

Ro:
Ro:
Ro:
Ro:
Ro:
Ro:

Ro:
Ro:
Ro:
Ro:
Ro:
Ro:
Ro:
Ro:

Ro:
Ro:
Ro:
Ro:
Ro:
Ro:

Ro:
Ro:

0

1 Ro:
1 Ro:

0.633333
0.633333

Ro:

Ro:

0

1 Ro:
1 Ro:

0.622222
0.644444

OO0 000O000OO0O0O0OO0OOOOOOOOOO O OO O

o

o

OO0 0000000000O00O0OO00O0OO0O0OO0O0OOOO0OOO0O0OO0OOOOOOOO OO0 o

o

.35 Rv:
.35 Rv:
.35 Rv:
.35 Rv:
.35 Rv:
.35 Rv:
.35 Rv:
.352778
.352778
.352778
.352778
.352778
.352778
.352778
.352778
.344444
.344444
.344444
.344444
.344444
.344444
.344444
.344444
.344444
.344444
.344444
.341667

.622222

Ro:
Ro:
.336111

.336111

.336111
.336111
.336111
.336111
.336111
.336111
.338889
.338889
.338889
.338889
.341667
.341667
.336111
.336111
.333333
.333333
.327778
.325 Rv:
.327778
.327778
.325 Rv:
.325 Rv:
.327778
.327778
.327778
.327778
.330556
.330556
.330556
.330556
.330556
.330556
.330556
.327778
.327778
.327778
.325 Rv:
.325 Rv:
.325 Rv:
.330556
.330556
.330556
.330556

.622222

Ro:

NO Iv:
NO Iv:
NO Iv:
NO Iv:
NO Iv:
NO Iv:
NO Iv:

0.344444
0.344444

Dr:

Dr:

NO Iv:

NO Iv:
NO Iv:

NO Iv:
NO Iv:
NO Iv:

Ro:

0.330556
0.330556

NO
NO
NO
NO
NO
NO
NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
0.336111
</PrevA>
</PrevB>
(-0.897004, -
(-0.951187, -
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO
NO Iv: NO
NO Iv: NO
NO
NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO
NO
NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
NO Iv: NO
0.330556
</PrevA>
</PrevB>

<OldHd>
Hd: (0.85113, -0.524
<NewHd>
0.881522) HdA: (0.881522, -0.47
</StrokeHeader>
Wait: 0.000s Loc
Wait: 0.018s Loc
0.018s Loc
0.009s Loc
0.018s Loc
0.018s Loc
0.0lés Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.036s Loc
0.018s Loc
0.018s Loc
0.014s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.012s Loc
0.032s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.036s Loc
Wait: 0.003s Loc
</StrokeEvent>
<StrokeEvent>
<StrokeHeader>
<EventPt>
NO Iv: NO </EventPt>
<Recorded>
<Smooth>
</Smooth>
<PrevA>
<PrevB>
<OldHd>
0.905908) Hd: (0.905908, -0.42
<NewHd>
0.904532) Hd: (0.904532, -0.42
</StrokeHeader>
Wait: 0.000s Loc
Wait: 0.018s Loc
Wait: 0.036s Loc
Wai 0.018s Loc
0.018s Loc
0.017s Loc
0.028s Loc
0.018s Loc
0.014s Loc
0.018s Loc
0.018s Loc
0.018s Loc
0.018s Loc:
0.016s Loc:
0.036s Loc:
0.036s Loc:
0.018s Loc:
0.018s Loc:
0.018s Loc:
0.036s Loc:
0.018s Loc:
0.018s Loc:
0.018s Loc:
0.024s Loc:
0.018s Loc:
0.014s Loc:
0.018s Loc:
0.018s Loc:
0.018s Loc:
0.018s Loc:
0.0les Loc:
0.018s Loc:
0.014s Loc:
0.017s Loc:
</StrokeEvent>
Wait: 0.039s EvType: Co:
SetColourHLS (Random (), ColourL
<StrokeEvent>
<StrokeHeader>
<EventPt>
NO Iv: NO </EventPt>
<Recorded>
<Smooth>

OO0 O00000O0OO0O000O0O00OO0OO0O0OO0O0OO0OO0OOOOOOOOO OO0 O

<

Pr
83
66

Pr:
Pr:
Pr:

Pr:

OO0 0000O0OO00000O0O0O0O0O0OOOO0OO0OOOOOOOOO OO0 O

<

Loc: (526, 685)
954) </0ldHd>
Loc: (526, 684)
2142) </NewHd>
(525, 687) Pr:
(525, 691) Pr:
(524, 692) Pr:
(523, 697) Pr:
(522, 698) Pr:
(521, 702) Pr:
(520, 707) Pr:
(519, 708) Pr:
(517, 712) Pr:
(516, 715) Pr:
(513, 718) Pr:
(511, 720) Pr:
(510, 721) Pr:
(507, 722) Pr:
(505, 722) Pr:
(501, 723) Pr:
(498, 722) Pr:
(496, 720) Pr:
(495, 717) Pr:
(495, 715) Pr:
(496, 713) Pr:
(499, 707) Pr:
(501, 704) Pr:
(503, 702) Pr:
(506, 700) Pr:
(508, 698) Pr:
(510, 696) Pr:
(513, 694) Pr
(517, 689) Pr
(519, 684) Pr
(520, 682) Pr
(520, 680) Pr
(520, 678) Pr
(519, 677) Pr
(519, 677) Pr
Wait: 0.427s Loc:
Yes
Count: 3
Loc: (518, 679)
Loc: (518.406, 679.
Loc: (518.813, 680.
Loc: (519, 677)
Loc: (520, 678)
Loc: (518, 680)
3475) </0ldHd>
Loc: (518, 679)
6405) </NewHd>
(516, 679) Pr
(515, 680) Pr
(512, 682) Pr
(511, 683) Pr
(509, 684) Pr
(504, 686) Pr
(498, 688) Pr
(497, 689) Pr
(492, 690) Pr
(490, 690) Pr
(487, 690) Pr
(484, 690) Pr
(481, 690) Pr:
(476, 688) Pr:
(474, 686) Pr:
(473, 684) Pr:
(473, 681) Pr:
(472, 678) Pr:
(472, 675) Pr:
(472, 672) Pr:
(473, 671) Pr:
(477, 668) Pr:
(480, 667) Pr:
(486, 667) Pr:
(488, 668) Pr:
(495, 669) Pr:
(499, 670) Pr:
(504, 672) Pr:
(506, 675) Pr:
(508, 677) Pr:
(515, 679) Pr:
(518, 679) Pr:
(528, 678) Pr:
(531, 678) Pr:
mmand CommandID:
(), Colours());
Wait: 1.265s Loc:
Yes
Count: 3
Loc: (536, 667)

Pr:

0 Ti: 0.622222 Ro: 0.336111 Dr: (-0.524954, -0.85113
0 Ti: 0.622222 Ro: 0.330556 Dr: (-0.472142, -
.528376 0.622222 Ro: 0.330556 Rv: NO Iv: NO
.546967 0.622222 Ro: 0.330556 Rv: NO Iv: NO
.55773 0.622222 Ro: 0.330556 Rv: NO Iv: NO
.568493 0.633333 Ro: 0.327778 Rv: NO Iv: NO
.586106 0.633333 Ro: 0.327778 Rv: NO Iv: NO
.604697 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.631115 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.644814 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.656556 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.681018 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.69863 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.706458 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.707436 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.708415 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.712329 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.713307 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.710372 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.71135 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.687867 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.668297 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.666341 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.667319 0.644444 Ro: 0.319444 Rv: NO Iv: NO
.667319 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.668297 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.661448 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.65362 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.650685 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.649706 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.649706 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.652642 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.652642 0.633333 Ro: 0.322222 Rv: NO Iv: NO
.659491 0.633333 Ro: 0.327778 Rv: NO Iv: NO
.666341 0.633333 Ro: 0.327778 Rv: NO Iv: NO
.126223 0.622222 Ro: 0.330556 Rv: NO Iv: NO
0.622222 Ro: 0.330556 Rv: NO Iv: NO
(518, 679) Pr: 0.189824 Ti: 0.622222 Ro: 0.330556 Rv
/Recorded>
: 0 Ti: 1 Ro: 0
2) Pr: 0 Ti: 1 Ro: 0
3) Pr: 0 Ti: 1 Ro: 0
0.126223 Ti: 0.622222 Ro: 0.330556 </PrevA>
0.666341 Ti: 0.633333 Ro: 0.327778 </PrevB>
0 Ti: 0.633333 Ro: 0.327778 Dr: (-0.423475, -
0 Ti: 0.633333 Ro: 0.327778 Dr: (-0.426405, -
.370841 .622222 Ro: 0.336111 Rv: NO Iv: NO
.422701 .622222 Ro: 0.336111 Rv: NO Iv: NO
.54501 .622222 Ro: 0.336111 Rv: NO Iv: NO
.585127 .622222 Ro: 0.336111 Rv: NO Iv: NO
.609589 .633333 Ro: 0.338889 Rv: NO Iv: NO
.642857 .633333 Ro: 0.338889 Rv: NO Iv: NO
.679061 .633333 Ro: 0.333333 Rv: NO Iv: NO
.697652 .633333 Ro: 0.333333 Rv: NO Iv: NO
.712329 .633333 Ro: 0.333333 Rv: NO Iv: NO
.720157 .644444 Ro: 0.330556 Rv: NO Iv: NO
.734834 .644444 Ro: 0.330556 Rv: NO Iv: NO
.752446 .644444 Ro: 0.330556 Rv: NO Iv: NO
.754403 .644444 Ro: 0.333333 Rv: NO Iv: NO
.757339 .644444 Ro: 0.333333 Rv: NO Iv: NO
. 75636 .644444 Ro: 0.333333 Rv: NO Iv: NO
.741683 .644444 Ro: 0.336111 Rv: NO Iv: NO
.74364 .644444 Ro: 0.336111 Rv: NO Iv: NO
. 742661 .644444 Ro: 0.341667 Rv: NO Iv: NO
.74364 .633333 Ro: 0.344444 Rv: NO Iv: NO
.72407 .633333 Ro: 0.35 Rv: NO Iv: NO
.721135 .633333 Ro: 0.35 Rv: NO Iv: NO
.720157 .633333 Ro: 0.35 Rv: NO Iv: NO
.719178 .633333 Ro: 0.35 Rv: NO Iv: NO
.717221 .633333 Ro: 0.35 Rv: NO Iv: NO
.717221 .633333 Ro: 0.35 Rv: NO Iv: NO
L7182 .633333 Ro: 0.35 Rv: NO Iv: NO
L7182 .633333 Ro: 0.35 Rv: NO Iv: NO
.717221 .622222 Ro: 0.347222 Rv: NO Iv: NO
.717221 .622222 Ro: 0.347222 Rv: NO Iv: NO
.719178 .622222 Ro: 0.347222 Rv: NO Iv: NO
. 716243 L611111 Ro: 0.344444 Rv: NO Iv: NO
.701566 .622222 Ro: 0.338889 Rv: NO Iv: NO
.606654 .622222 Ro: 0.338889 Rv: NO Iv: NO
.622222 Ro: 0.338889 Rv: NO Iv: NO
SetForeColour ParamType: Pixel Value: { O0xOFFC9E918 }
// Added this line in a text editor.
(536, 667) Pr: 0.212329 Ti: 0.633333 Ro: 0.344444 Rv
/Recorded>
0 Ti: 1 Ro: 0

Loc: (536.953, 667.047) Pr: 0 Ti: 1 Ro: 0
Loc: (537.906, 667.094) Pr: 0 Ti: 1 Ro: 0
</Smooth>
<PrevA> Loc: (530, 751) Pr: 0.251468 Ti: 0.622222 Ro:
<PrevB> Loc: (523, 751) Pr: 0.391389 Ti: 0.622222 Ro:
<OldHd> Loc: (537, 667) Pr: 0 Ti: 0.644444 Ro: 0.344444
0.99921) Hd: (0.99921, -0.0397409) </0ldHd>
<NewHd> Loc: (536, 667) Pr: 0 Ti: 0.644444 Ro: 0.341667
Hd: (0.964202, -0.26517) </NewHd>
</StrokeHeader>
Wait: 0.000s Loc: (535, 666) Pr: 0.409002 0.633333 Ro: 0.344444
Wait: 0.018s Loc: (533, 666) Pr: 0.470646 0.633333 Ro: 0.344444
0.036s Loc: (532, 667) Pr: 0.534247 0.633333 Ro: 0.344444
0.018s Loc: (530, 668) Pr: 0.545988 0.633333 Ro: 0.344444
0.018s Loc: (528, 671) Pr: 0.550881 0.633333 Ro: 0.344444
0.018s Loc: (527, 674) Pr: 0.551859 0.633333 Ro: 0.344444
0.018s Loc: (527, 677) Pr: 0.550881 0.633333 Ro: 0.344444
0.019s Loc: (529, 680) Pr: 0.54501 0.633333 Ro: 0.344444
0.018s Loc: (531, 681) Pr: 0.509785 0.633333 Ro: 0.344444
0.018s Loc: (533, 681) Pr: 0.479452 0.633333 Ro: 0.344444
0.010s Loc: (538, 680) Pr: 0.484344 0.633333 Ro: 0.344444
0.028s Loc: (543, 677) Pr: 0.488258 0.633333 Ro: 0.344444
0.018s Loc: (544, 676) Pr: 0.490215 0.633333 Ro: 0.344444
0.036s Loc: (544, 674) Pr: 0.539139 0.633333 Ro: 0.344444
0.018s Loc: (544, 672) Pr: 0.554795 0.633333 Ro: 0.344444
0.018s Loc: (544, 670) Pr: 0.564579 0.633333 Ro: 0.344444
0.036s Loc: (540, 667) Pr: 0.624266 0.633333 Ro: 0.344444
0.018s Loc: (537, 667) Pr: 0.631115 0.633333 Ro: 0.344444
0.016s Loc: (532, 670) Pr: 0.556751 0.633333 Ro: 0.35 Rv:
Wait: 0.013s Loc: (532, 670) Pr: O 0.633333 Ro: 0.35 Rv:
</StrokeEvent>
} // End of 'PaintOneFlower()' function. Added this line in a text editor.

// Added the following code block with a text editor

Randomize ()

for (int n 1; n <= 100; n++)
MessageTip ("Flower number %

= {
sn")
// Offset the
real rOffsetX
real rOffsetY
SetTransOffset (rOffsetX,
PaintOneFlower (

Random (=525 + 100,

rOffsetY)

Listing 2: Five Circles

4 * n - 672 + PaintingHeight ()

PaintingWidth ()
/ 2

flower from where it was originally painted at Loc:
- 525 - 100)

// Function to draw a circle with the current tool and colour,

void Circle(real rCX,
<StrokeEvent>

real rCY,

// Prepare for the stroke.
real x = rCX

real y rCY + rRad

real pi 3.14159265

// Do the stroke header - Sets

<StrokeHeader>
<EventPt> Loc: (x, y) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv:
<Recorded> No </Recorded>
</StrokeHeader>
// Do the circle
Loc: (%, y) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv: NO // MouseDown poin
// Body of circle.
for (real s = 0; s <= pi * 2.05; s += pi / 100) { // Slightly more than a circle,
x = rCX + sin(s) * rRad
y = rCY + cos(s) * rRad
real rPres = cos(s * 2) / 2 + 0.5
Loc: (x, y) Pr: rPres Ti: 1 Ro: 0 Rv: NO Iv: NO
}
Loc: (x, y) Pr: 1 Ti: 1 Ro: 0 Rv: NO Iv: NO // MouseUp point.
</StrokeEvent>

}
<Events>

// Program actually starts here.
int nCircleCount = 5
real rMaxRad = 500

real rRad) {

'event location

real rRadStep

// Draw five ci
for (int n = 1;

rMaxRad / nCircleCount

rcles,
n <= nCircleCount;

from smallest to biggest.
n++) {

real rRad = rRadStep * n

MessageTip ("Circle number %%n at radius %%rRad")

Circle (640, 512, rRad)

(525, 672)
// Randomly move flowe
// Move flower down sl

and varying pressure.

Wait: 1.
}

</Events>

Os

// Admire our circle for a second.

0.336111 </PrevA>

0.336111 </PrevB>
Dr: (-0.0397409, -
Dr: (-0.26517, -0.964202)
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO
Rv: NO Iv: NO

NO Iv: NO

NO Iv: NO

r left/right half the painting.
ightly as we go.

NO </EventPt>

t

so paint end overlaps start

TABLE OF CONTENTS.

INTRODUCTION:ivuiitiitniienicinicinicinsiasiassiessiessiesssssssssssssssssssssssssssssssesssssssssasssasssasssasssans 1
THE SCRIPT FILE .uttteeutteeesuuteeeenuseeesseeeeessusseessusaeessssseeesnssneessssssessnssesssnnssesssnsssesssssssessnssesssnsssesssnsseessssseeesnssseessnseeenns 1
‘LANGUAGE’ VS “‘RECORDEDveuveenteenreenteentesitesseesteestee st estesasesinesbeesbeesbee st enseese s emeesbe e b e e b e earesenesanesmaesmeenseenntenneennens 1

THE LANGUARGEcuitiiiiiiiiiiieiiiiieiiiiieiisesiasiaiisessestostastessssstsstassasssssssssassessssssassassassssssassas 3
COMIMENTS ..ttt ittt e e e ettt e e e e e e e ettt e e e e e s e uanbe e et eeesaaausbe e e eeeeeaaasbe e e eee e e e aasbeeeeeeeee s ansabaeeeeeesannssbeeeeeeesaannseeaeaessanannnees 3
STATEMENTS -ttt eeuuttteerurteesetreeesausaeeesbaeeeesbeeesaaseeeesasseeeassbeeesaaseeessasateeeaabeeesansseeesasseeeenbeeesansseeesansbeessabbeeeanraeesanneeas 3
W ARIABLES ...ttt 558888 e s s s s s s nbabnbnbnbnnn 3
DYNAMIC ARRAYSvteeeeuttteesutteessurteesaauseeesausteessaseeesasseeesasseeesaasesesansseessnsaessanbesesansseeesanseeesansenesasseeesanseeessnsenesannne 5
OPERATORS «..ttttteeeeeeeuieteeeeeeeeeauuatteeeeeeseauasta e e eeeesaausbeteeeeesaaasbe e e eeeeaaansbeeeeeeeee s anbebaeeeeeesanbsetaeeesesaannseeaeeessananneen 5
FILE WARIABLES. ..eeetuttteeettteesutteeesuttteseuteeesutteessabeeesesbeeesanbaeesabeeesaasaeeesasseeeeabeeesaasbeeesasseeeenbeeesaasseeesanseaessabeeesannne 7
FLOW CONTROL. tvettuutteeeeuureeeeauteesesueeeeesssseessasseesesseeesasssesssnsseesssssesesssssesssnssesssssssnesssssesssssssesssseessssssesssnsseeessnsseessnnes 8

2] o Yol PP 9
f/EREIIJCISE ...ttt ettt e te ettt ettt et e et e et e et e et e e et e teeste e teeat e eateerteareeare e baebaerenrrens 9
Lo Y4 T=> < PO TP 10
WRIIE OO ...ttt ettt et ettt et e e st e ettt et e et e e st e et e e st e et eenaee s 11
BIOAK/CONTINUE ..ottt e e ettt e e e s e s sttt e s e s as st etesssassassbetesssasssasseesasssasasssssesasssessnnres 11
EXTt oeeee ettt ettt e et e et e e ettt e e —te e e ettt e e ettt e ea b tae e ettt e e aant et e eaata e e e tteeeaanteaeeanttaeeatreaeans 12
FUNCTION CALLS .t eutteee ettt eeitteeeeittee e ettt e sattee e sabteeeesbeeesausteeesabbeeeeasbeeesabeeessabbeeeansbeeesansbeeesabbeeeanbeeesaanbeeesnseaeans 12
FUNCEION AEFINIEIONS.coeeeeneiieeee ettt ettt sttt e et e st e e st e st e esea st e eseeenes 13
CAIlING FUNCLIONS. ..ot ettt ettt et e e et e e ettt e e e st e e e e tsaaeesssa e e tstaaaastssaeesssaaassesenasssesesasses 14
FUNCLION FECUISION......evveeeeeeiiieeee ettt e ettt e e e ettt e e e e ettt e e s e s s astbteeaeesssasbstseaessenssssaneaasesssases 16
TRE WATt:” GIFECLIVE. ..veuevveseiresiiesiieeiee st stt e st s e s e st e st e st e s bt e s ate e s taasases s taasasessabaasasassasaasasesstensseesas 17
BUILT=IN FUNCTIONS ...ceeteutteeeemtteessureeesstteeesasseeessaseeesenreeesamsseessaseeesaasseeesanseeesamsaeesamseeesansneeesanaeesanneeesannneessanneeeans 18
1LY o1 oI (Y g Lot Lo KOS UUUPUUURRt 18
String MANIPUIAEION fUNCHIONS......c..vvveeeeiieeeeeee ettt e et e e ettt e e et e e e sttt e e e estee e s asseaesssteaesanssaeeanseneas 19
ALTQY FUNCEIONSoeeeeeeeeeee e et e e et e et e e ettt e e ettt e e e et e e e etb e e e e ass s e e assaaeaatse s e e ssssaeassssaesssasanasssasenssses 20
File VATiQDBIE fUNCLIONS........ccccveeeeeeieeeeeiee et e et e et e sttt e e e ettt e e sstea e sttt aeeasseaesaasaaasssseaesansesesansenasnsseasnns 21
AItRAGE SYSEEIM FUNCLIONS.c...vveeeseeee et e et e e ettt e et e e ettt e e e ettt e e e taa e e e tsaaeeastssaeesssaesssasanastssseannses 23
PNt COOUN FUNCLIONS. ettt ettt et e s bt s bt e s ab e et esabe e beesabe e bt e saseesbeesnbeenseeeseesanennne 23
1Yo e oY o 1= o AV 0 o Yot o o - USRS 23
MOUSE/KEYDOAIT FUNCLIONS.vicveeiectietietieiectee sttt rte ettt e e et e e e e beeasesbeessesbeensesbeesseseensesseessebeensesseesseseensenseessensean 24
Transformation SPACE FUNCLIONS.ccuiiiiiiiieceee et e e et e e e s b e e e sabeeeesbaeesnbeessnsaeeennseees 24
MIESSAEE FUNCLIONS. ..ttt ettt ettt e et e e ettt e e ab e e e s bt e e e e bt e e e abeeesbbeeeeabeee e sbeeesnbeeeeaneeeenaneeas 25
MISCEIIANEOUS FUNCHIONS. ..ttt sttt e sb e st esab e et esabe e beesab e e bt e sabeesbeesnbeenseesaseesanennne 26
o] N 0T ot o LSS 26

PUTTING IT TOGETHER. ...cciieiieiiiiiiiiiiiiiieiieiineiiesieiisisesiestasiascsessestasssssssssessassassssssassans 27
L00 FLOWERS. .. eettttttee e e ettt et e e e e et bet e e e e e e e s asbe et e e e e e e s asba et e eeeee s s bs et eeee e e s aass b et e eeeeeaannnbeeeeeeesaannbebaeeaeeesansnnaeeeens 27
FIVE CIRCLES. . vttt eittees ettt e sttt e e sttt e s ettt e s et e e sabe e e s easr e e e s nn e e e e sase e e s aas b e e e s mnn e e e sa s e eeseasreeesnsneeesanaeesanneeesennneessanneeeann 28

SAMPLE ARTRAGE SCRIPT CODE LISTINGS.....cccciieiiteitninmiincienianianissiasiaisssesresssssssssessanse 28
LISTING 12 100 FLOWERS ... eetteteeeeeeeuitett e e e e s ettt e e e e e s sbae e e e e e e e s e aneb e eeeeeeseaneb et e e eaeseaannbebeeeeeaaannbebeeeeeeeannsnneeeeens 29
LISTING 21 FIVE CIRCLES. ... eteeeutteeesureeesetteeesauseeeesuteeesemreeesausseessaseeesasseeesamnneessasaeesasnseeesansneessanaeesanreeesannneessanseesann 33

TABLE OF FIGURES.

TABLE 12 OPERATORS ...ccuttiutiittiitti ettt st ettt ettt sttt e s bbb e e ab e e ae e e be e b e e b e e e b e e ab e s hee s he e s he e e be e abeeabeebs s ebe e be e be e beeabeeasesanenas 6
TABLE 2: BUILT-IN MATH FUNCTIONS.....etiutiitiitieteeteestestteste e st et ets st b s eae s be e besabeeatesaaesaassaeesaeesbeenbssaeseaesebeesbeebeenrean

TABLE 32 STRING FUNCTIONS «.vteeuvteeutteeteeeteeesseeesuseesseeesssesssseesssesssseesssesssseesssessnsesssseessseesssessnseesssessnsessssessnseesasessnseesnne
TABLE 4: DYNAMIC ARRAY FUNCTIONS

TABLE 5: FILE VARIABLE FUNCTIONS ...t euvvteutessuteesuteessseessseessseesssesssseesssesssseesssessnseesssesssessssessnseesssessnsessssessnsessssessnseesne
TABLE 6: ARTRAGE PAINT COLOUR FUNCTIONScetetteeuuttttteeeeeasuutetteeeessaastareeeeesssaaussseaeeesssasannseteeesssesasseseeeessessanssnseeeens 23
TABLE 7: PAINTING LAYER PROPERTY FUNCTIONS ..euvveeeureesureesueeesureesseesuseesseessseesnseessseessseesssessnseesssessnseessessssesssssessseesne 23
TABLE 8: MOUSE/KEYBOARD FUNCTIONS «....vveeeureeiureeesseessreeeseessreeeseessseeesseesssesssseessessssessssesessesssessssessnsesensesensesensessnns 24
TABLE 9: TRANSFORMATION FUNCTIONS ..veeutveeureestteesuteessreessseesssesssseesssesssseesssessseessseesssessssessnseesssessnsessssessssessssessnseesnns 24
TABLE 10: IMIESSAGE FUNCTIONSvttttteteeuutttteeessaaauusteteeeeesesausseaeeeessesassssaeesesssassssataeesssasansseaaeeessesassseneeeessesansnneeeeens 25
TABLE 11: IMISCELLANEOUS FUNCTIONS. ...t etteeureesureesueeessreessseessresssseesssesssseessseessseessseessessssessnsessssessssessssessssessssessnseesne 26

TABLE 12 FILE FUNCTIONS. ...eettttttttieeeeereeestaieeeesresssaneeeeesssssstaneeeesssssssnnesessssssssssnesessssssssnnnesessssssssnneesessssssssnneesessesssnnns 27

